Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Sep;9(9):1642–1650. doi: 10.1110/ps.9.9.1642

A single disulfide bond restores thermodynamic and proteolytic stability to an extensively mutated protein.

K R Roesler 1, A G Rao 1
PMCID: PMC2144711  PMID: 11045611

Abstract

The potential for engineering stable proteins with multiple amino acid substitutions was explored. Eleven lysine, five methionine, two tryptophan, one glycine, and three threonine substitutions were simultaneously made in barley chymotrypsin inhibitor-2 (CI-2) to substantially improve the essential amino acid content of the protein. These substitutions were chosen based on the three-dimensional structure of CI-2 and an alignment of homologous sequences. The initial engineered protein folded into a wild-type-like structure, but had a free energy of unfolding of only 2.2 kcal/mol, considerably less than the wild-type value of 7.5 kcal/mol. Restoration of the lysine mutation at position 67 to the wild-type arginine increased the free energy of unfolding to 3.1 kcal/mol. Subsequent cysteine substitutions at positions 22 and 82 resulted in disulfide bond formation and a protein with nearly wild-type thermodynamic stability (7.0 kcal/mol). None of the engineered proteins retained inhibitory activity against chymotrypsin or elastase, and all had substantially reduced inhibitory activity against subtilisin. The proteolytic stabilities of the proteins correlated with their thermodynamic stabilities. Reduction of the disulfide bond resulted in substantial loss of both thermodynamic and proteolytic stabilities, confirming that the disulfide bond, and not merely the cysteine substitutions, was responsible for the increased stability. We conclude that it is possible to replace over a third of the residues in CI-2 with minimal disruption of stability and structural integrity.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Betz S. F. Disulfide bonds and the stability of globular proteins. Protein Sci. 1993 Oct;2(10):1551–1558. doi: 10.1002/pro.5560021002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clore G. M., Gronenborn A. M., James M. N., Kjaer M., McPhalen C. A., Poulsen F. M. Comparison of the solution and X-ray structures of barley serine proteinase inhibitor 2. Protein Eng. 1987 Aug-Sep;1(4):313–318. doi: 10.1093/protein/1.4.313. [DOI] [PubMed] [Google Scholar]
  3. Clore G. M., Gronenborn A. M., Kjaer M., Poulsen F. M. The determination of the three-dimensional structure of barley serine proteinase inhibitor 2 by nuclear magnetic resonance, distance geometry and restrained molecular dynamics. Protein Eng. 1987 Aug-Sep;1(4):305–311. doi: 10.1093/protein/1.4.305. [DOI] [PubMed] [Google Scholar]
  4. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  5. Falco S. C., Guida T., Locke M., Mauvais J., Sanders C., Ward R. T., Webber P. Transgenic canola and soybean seeds with increased lysine. Biotechnology (N Y) 1995 Jun;13(6):577–582. doi: 10.1038/nbt0695-577. [DOI] [PubMed] [Google Scholar]
  6. Inoue I., Rechsteiner M. On the relationship between the metabolic and thermodynamic stabilities of T4 lysozymes. Measurements in Escherichia coli. J Biol Chem. 1994 Nov 18;269(46):29241–29246. [PubMed] [Google Scholar]
  7. Inoue I., Rechsteiner M. On the relationship between the metabolic and thermodynamic stabilities of T4 lysozymes. Measurements in eukaryotic cells. J Biol Chem. 1994 Nov 18;269(46):29247–29251. [PubMed] [Google Scholar]
  8. Itzhaki L. S., Otzen D. E., Fersht A. R. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding. J Mol Biol. 1995 Nov 24;254(2):260–288. doi: 10.1006/jmbi.1995.0616. [DOI] [PubMed] [Google Scholar]
  9. Jackson S. E., Fersht A. R. Contribution of residues in the reactive site loop of chymotrypsin inhibitor 2 to protein stability and activity. Biochemistry. 1994 Nov 22;33(46):13880–13887. doi: 10.1021/bi00250a042. [DOI] [PubMed] [Google Scholar]
  10. Jackson S. E., Fersht A. R. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry. 1991 Oct 29;30(43):10428–10435. doi: 10.1021/bi00107a010. [DOI] [PubMed] [Google Scholar]
  11. Jackson S. E., Moracci M., elMasry N., Johnson C. M., Fersht A. R. Effect of cavity-creating mutations in the hydrophobic core of chymotrypsin inhibitor 2. Biochemistry. 1993 Oct 26;32(42):11259–11269. doi: 10.1021/bi00093a001. [DOI] [PubMed] [Google Scholar]
  12. Jandu S. K., Ray S., Brooks L., Leatherbarrow R. J. Role of arginine 67 in the stabilization of chymotrypsin inhibitor 2: examination of amide proton exchange rates and denaturation thermodynamics of an engineered protein. Biochemistry. 1990 Jul 3;29(26):6264–6269. doi: 10.1021/bi00478a022. [DOI] [PubMed] [Google Scholar]
  13. Katz B. A., Kossiakoff A. The crystallographically determined structures of atypical strained disulfides engineered into subtilisin. J Biol Chem. 1986 Nov 25;261(33):15480–15485. [PubMed] [Google Scholar]
  14. Kowalski J. M., Parekh R. N., Wittrup K. D. Secretion efficiency in Saccharomyces cerevisiae of bovine pancreatic trypsin inhibitor mutants lacking disulfide bonds is correlated with thermodynamic stability. Biochemistry. 1998 Feb 3;37(5):1264–1273. doi: 10.1021/bi9722397. [DOI] [PubMed] [Google Scholar]
  15. Ladurner A. G., Fersht A. R. Glutamine, alanine or glycine repeats inserted into the loop of a protein have minimal effects on stability and folding rates. J Mol Biol. 1997 Oct 17;273(1):330–337. doi: 10.1006/jmbi.1997.1304. [DOI] [PubMed] [Google Scholar]
  16. Ladurner A. G., Itzhaki L. S., Daggett V., Fersht A. R. Synergy between simulation and experiment in describing the energy landscape of protein folding. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8473–8478. doi: 10.1073/pnas.95.15.8473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  18. Liao H. H. Thermostable mutants of kanamycin nucleotidyltransferase are also more stable to proteinase K, urea, detergents, and water-miscible organic solvents. Enzyme Microb Technol. 1993 Apr;15(4):286–292. doi: 10.1016/0141-0229(93)90151-q. [DOI] [PubMed] [Google Scholar]
  19. Ludvigsen S., Shen H. Y., Kjaer M., Madsen J. C., Poulsen F. M. Refinement of the three-dimensional solution structure of barley serine proteinase inhibitor 2 and comparison with the structures in crystals. J Mol Biol. 1991 Dec 5;222(3):621–635. doi: 10.1016/0022-2836(91)90500-6. [DOI] [PubMed] [Google Scholar]
  20. Manning M. C., Woody R. W. Theoretical study of the contribution of aromatic side chains to the circular dichroism of basic bovine pancreatic trypsin inhibitor. Biochemistry. 1989 Oct 17;28(21):8609–8613. doi: 10.1021/bi00447a051. [DOI] [PubMed] [Google Scholar]
  21. Matthews B. W. Structural and genetic analysis of protein stability. Annu Rev Biochem. 1993;62:139–160. doi: 10.1146/annurev.bi.62.070193.001035. [DOI] [PubMed] [Google Scholar]
  22. McCaldon P., Argos P. Oligopeptide biases in protein sequences and their use in predicting protein coding regions in nucleotide sequences. Proteins. 1988;4(2):99–122. doi: 10.1002/prot.340040204. [DOI] [PubMed] [Google Scholar]
  23. McPhalen C. A., James M. N. Crystal and molecular structure of the serine proteinase inhibitor CI-2 from barley seeds. Biochemistry. 1987 Jan 13;26(1):261–269. doi: 10.1021/bi00375a036. [DOI] [PubMed] [Google Scholar]
  24. Otzen D. E., Fersht A. R. Folding of circular and permuted chymotrypsin inhibitor 2: retention of the folding nucleus. Biochemistry. 1998 Jun 2;37(22):8139–8146. doi: 10.1021/bi980250g. [DOI] [PubMed] [Google Scholar]
  25. Otzen D. E., Fersht A. R. Side-chain determinants of beta-sheet stability. Biochemistry. 1995 May 2;34(17):5718–5724. doi: 10.1021/bi00017a003. [DOI] [PubMed] [Google Scholar]
  26. Otzen D. E., Rheinnecker M., Fersht A. R. Structural factors contributing to the hydrophobic effect: the partly exposed hydrophobic minicore in chymotrypsin inhibitor 2. Biochemistry. 1995 Oct 10;34(40):13051–13058. doi: 10.1021/bi00040a016. [DOI] [PubMed] [Google Scholar]
  27. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  28. Pace C. N. The stability of globular proteins. CRC Crit Rev Biochem. 1975 May;3(1):1–43. doi: 10.3109/10409237509102551. [DOI] [PubMed] [Google Scholar]
  29. Parsell D. A., Sauer R. T. The structural stability of a protein is an important determinant of its proteolytic susceptibility in Escherichia coli. J Biol Chem. 1989 May 5;264(13):7590–7595. [PubMed] [Google Scholar]
  30. Regan L., Rockwell A., Wasserman Z., DeGrado W. Disulfide crosslinks to probe the structure and flexibility of a designed four-helix bundle protein. Protein Sci. 1994 Dec;3(12):2419–2427. doi: 10.1002/pro.5560031225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
  32. Riddles P. W., Blakeley R. L., Zerner B. Reassessment of Ellman's reagent. Methods Enzymol. 1983;91:49–60. doi: 10.1016/s0076-6879(83)91010-8. [DOI] [PubMed] [Google Scholar]
  33. Roesler K. R., Rao A. G. Conformation and stability of barley chymotrypsin inhibitor-2 (CI-2) mutants containing multiple lysine substitutions. Protein Eng. 1999 Nov;12(11):967–973. doi: 10.1093/protein/12.11.967. [DOI] [PubMed] [Google Scholar]
  34. Sali D., Bycroft M., Fersht A. R. Surface electrostatic interactions contribute little of stability of barnase. J Mol Biol. 1991 Aug 5;220(3):779–788. doi: 10.1016/0022-2836(91)90117-o. [DOI] [PubMed] [Google Scholar]
  35. Shortle D. Staphylococcal nuclease: a showcase of m-value effects. Adv Protein Chem. 1995;46:217–247. doi: 10.1016/s0065-3233(08)60336-8. [DOI] [PubMed] [Google Scholar]
  36. Vuilleumier S., Sancho J., Loewenthal R., Fersht A. R. Circular dichroism studies of barnase and its mutants: characterization of the contribution of aromatic side chains. Biochemistry. 1993 Oct 5;32(39):10303–10313. doi: 10.1021/bi00090a005. [DOI] [PubMed] [Google Scholar]
  37. de Prat Gay G., Fersht A. R. Generation of a family of protein fragments for structure-folding studies. 1. Folding complementation of two fragments of chymotrypsin inhibitor-2 formed by cleavage at its unique methionine residue. Biochemistry. 1994 Jun 28;33(25):7957–7963. doi: 10.1021/bi00191a024. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES