Abstract
Comparative protein structure prediction is limited mostly by the errors in alignment and loop modeling. We describe here a new automated modeling technique that significantly improves the accuracy of loop predictions in protein structures. The positions of all nonhydrogen atoms of the loop are optimized in a fixed environment with respect to a pseudo energy function. The energy is a sum of many spatial restraints that include the bond length, bond angle, and improper dihedral angle terms from the CHARMM-22 force field, statistical preferences for the main-chain and side-chain dihedral angles, and statistical preferences for nonbonded atomic contacts that depend on the two atom types, their distance through space, and separation in sequence. The energy function is optimized with the method of conjugate gradients combined with molecular dynamics and simulated annealing. Typically, the predicted loop conformation corresponds to the lowest energy conformation among 500 independent optimizations. Predictions were made for 40 loops of known structure at each length from 1 to 14 residues. The accuracy of loop predictions is evaluated as a function of thoroughness of conformational sampling, loop length, and structural properties of native loops. When accuracy is measured by local superposition of the model on the native loop, 100, 90, and 30% of 4-, 8-, and 12-residue loop predictions, respectively, had <2 A RMSD error for the mainchain N, C(alpha), C, and O atoms; the average accuracies were 0.59 +/- 0.05, 1.16 +/- 0.10, and 2.61 +/- 0.16 A, respectively. To simulate real comparative modeling problems, the method was also evaluated by predicting loops of known structure in only approximately correct environments with errors typical of comparative modeling without misalignment. When the RMSD distortion of the main-chain stem atoms is 2.5 A, the average loop prediction error increased by 180, 25, and 3% for 4-, 8-, and 12-residue loops, respectively. The accuracy of the lowest energy prediction for a given loop can be estimated from the structural variability among a number of low energy predictions. The relative value of the present method is gauged by (1) comparing it with one of the most successful previously described methods, and (2) describing its accuracy in recent blind predictions of protein structure. Finally, it is shown that the average accuracy of prediction is limited primarily by the accuracy of the energy function rather than by the extent of conformational sampling.
Full Text
The Full Text of this article is available as a PDF (4.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abagyan R., Batalov S., Cardozo T., Totrov M., Webber J., Zhou Y. Homology modeling with internal coordinate mechanics: deformation zone mapping and improvements of models via conformational search. Proteins. 1997;Suppl 1:29–37. doi: 10.1002/(sici)1097-0134(1997)1+<29::aid-prot5>3.3.co;2-4. [DOI] [PubMed] [Google Scholar]
- Abagyan R., Totrov M. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol. 1994 Jan 21;235(3):983–1002. doi: 10.1006/jmbi.1994.1052. [DOI] [PubMed] [Google Scholar]
- Alwyn Jones T., Kleywegt G. J. CASP3 comparative modeling evaluation. Proteins. 1999;Suppl 3:30–46. doi: 10.1002/(sici)1097-0134(1999)37:3+<30::aid-prot6>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
- Bajorath J., Sheriff S. Comparison of an antibody model with an X-ray structure: the variable fragment of BR96. Proteins. 1996 Feb;24(2):152–157. doi: 10.1002/(SICI)1097-0134(199602)24:2<152::AID-PROT2>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
- Benner S. A., Cohen M. A., Gonnet G. H. Empirical and structural models for insertions and deletions in the divergent evolution of proteins. J Mol Biol. 1993 Feb 20;229(4):1065–1082. doi: 10.1006/jmbi.1993.1105. [DOI] [PubMed] [Google Scholar]
- Blundell T. L., Sibanda B. L., Sternberg M. J., Thornton J. M. Knowledge-based prediction of protein structures and the design of novel molecules. 1987 Mar 26-Apr 1Nature. 326(6111):347–352. doi: 10.1038/326347a0. [DOI] [PubMed] [Google Scholar]
- Brower R. C., Vasmatzis G., Silverman M., Delisi C. Exhaustive conformational search and simulated annealing for models of lattice peptides. Biopolymers. 1993 Mar;33(3):329–334. doi: 10.1002/bip.360330302. [DOI] [PubMed] [Google Scholar]
- Browne W. J., North A. C., Phillips D. C., Brew K., Vanaman T. C., Hill R. L. A possible three-dimensional structure of bovine alpha-lactalbumin based on that of hen's egg-white lysozyme. J Mol Biol. 1969 May 28;42(1):65–86. doi: 10.1016/0022-2836(69)90487-2. [DOI] [PubMed] [Google Scholar]
- Bruccoleri R. E., Haber E., Novotný J. Structure of antibody hypervariable loops reproduced by a conformational search algorithm. Nature. 1988 Oct 6;335(6190):564–568. doi: 10.1038/335564a0. [DOI] [PubMed] [Google Scholar]
- Bruccoleri R. E., Karplus M. Conformational sampling using high-temperature molecular dynamics. Biopolymers. 1990 Dec;29(14):1847–1862. doi: 10.1002/bip.360291415. [DOI] [PubMed] [Google Scholar]
- Bruccoleri R. E., Karplus M. Prediction of the folding of short polypeptide segments by uniform conformational sampling. Biopolymers. 1987 Jan;26(1):137–168. doi: 10.1002/bip.360260114. [DOI] [PubMed] [Google Scholar]
- Carlacci L., Englander S. W. The loop problem in proteins: a Monte Carlo simulated annealing approach. Biopolymers. 1993 Aug;33(8):1271–1286. doi: 10.1002/bip.360330812. [DOI] [PubMed] [Google Scholar]
- Chothia C., Lesk A. M. Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol. 1987 Aug 20;196(4):901–917. doi: 10.1016/0022-2836(87)90412-8. [DOI] [PubMed] [Google Scholar]
- Chothia C., Lesk A. M., Levitt M., Amit A. G., Mariuzza R. A., Phillips S. E., Poljak R. J. The predicted structure of immunoglobulin D1.3 and its comparison with the crystal structure. Science. 1986 Aug 15;233(4765):755–758. doi: 10.1126/science.3090684. [DOI] [PubMed] [Google Scholar]
- Chothia C., Lesk A. M., Tramontano A., Levitt M., Smith-Gill S. J., Air G., Sheriff S., Padlan E. A., Davies D., Tulip W. R. Conformations of immunoglobulin hypervariable regions. Nature. 1989 Dec 21;342(6252):877–883. doi: 10.1038/342877a0. [DOI] [PubMed] [Google Scholar]
- Chung S. Y., Subbiah S. A structural explanation for the twilight zone of protein sequence homology. Structure. 1996 Oct 15;4(10):1123–1127. doi: 10.1016/s0969-2126(96)00119-0. [DOI] [PubMed] [Google Scholar]
- Claessens M., Van Cutsem E., Lasters I., Wodak S. Modelling the polypeptide backbone with 'spare parts' from known protein structures. Protein Eng. 1989 Jan;2(5):335–345. doi: 10.1093/protein/2.5.335. [DOI] [PubMed] [Google Scholar]
- Cohen B. I., Presnell S. R., Cohen F. E. Origins of structural diversity within sequentially identical hexapeptides. Protein Sci. 1993 Dec;2(12):2134–2145. doi: 10.1002/pro.5560021213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen F. E., Abarbanel R. M., Kuntz I. D., Fletterick R. J. Turn prediction in proteins using a pattern-matching approach. Biochemistry. 1986 Jan 14;25(1):266–275. doi: 10.1021/bi00349a037. [DOI] [PubMed] [Google Scholar]
- Collura V., Higo J., Garnier J. Modeling of protein loops by simulated annealing. Protein Sci. 1993 Sep;2(9):1502–1510. doi: 10.1002/pro.5560020915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deane C. M., Blundell T. L. A novel exhaustive search algorithm for predicting the conformation of polypeptide segments in proteins. Proteins. 2000 Jul 1;40(1):135–144. [PubMed] [Google Scholar]
- Donate L. E., Rufino S. D., Canard L. H., Blundell T. L. Conformational analysis and clustering of short and medium size loops connecting regular secondary structures: a database for modeling and prediction. Protein Sci. 1996 Dec;5(12):2600–2616. doi: 10.1002/pro.5560051223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans J. S., Mathiowetz A. M., Chan S. I., Goddard W. A., 3rd De novo prediction of polypeptide conformations using dihedral probability grid Monte Carlo methodology. Protein Sci. 1995 Jun;4(6):1203–1216. doi: 10.1002/pro.5560040618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fechteler T., Dengler U., Schomburg D. Prediction of protein three-dimensional structures in insertion and deletion regions: a procedure for searching data bases of representative protein fragments using geometric scoring criteria. J Mol Biol. 1995 Oct 13;253(1):114–131. doi: 10.1006/jmbi.1995.0540. [DOI] [PubMed] [Google Scholar]
- Fetrow J. S., Godzik A., Skolnick J. Functional analysis of the Escherichia coli genome using the sequence-to-structure-to-function paradigm: identification of proteins exhibiting the glutaredoxin/thioredoxin disulfide oxidoreductase activity. J Mol Biol. 1998 Oct 2;282(4):703–711. doi: 10.1006/jmbi.1998.2061. [DOI] [PubMed] [Google Scholar]
- Fidelis K., Stern P. S., Bacon D., Moult J. Comparison of systematic search and database methods for constructing segments of protein structure. Protein Eng. 1994 Aug;7(8):953–960. doi: 10.1093/protein/7.8.953. [DOI] [PubMed] [Google Scholar]
- Fine R. M., Wang H., Shenkin P. S., Yarmush D. L., Levinthal C. Predicting antibody hypervariable loop conformations. II: Minimization and molecular dynamics studies of MCPC603 from many randomly generated loop conformations. Proteins. 1986 Dec;1(4):342–362. doi: 10.1002/prot.340010408. [DOI] [PubMed] [Google Scholar]
- Finkelstein A. V., Reva B. A. Search for the stable state of a short chain in a molecular field. Protein Eng. 1992 Oct;5(7):617–624. doi: 10.1093/protein/5.7.617. [DOI] [PubMed] [Google Scholar]
- Flores T. P., Orengo C. A., Moss D. S., Thornton J. M. Comparison of conformational characteristics in structurally similar protein pairs. Protein Sci. 1993 Nov;2(11):1811–1826. doi: 10.1002/pro.5560021104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fushman D., Cahill S., Cowburn D. The main-chain dynamics of the dynamin pleckstrin homology (PH) domain in solution: analysis of 15N relaxation with monomer/dimer equilibration. J Mol Biol. 1997 Feb 14;266(1):173–194. doi: 10.1006/jmbi.1996.0771. [DOI] [PubMed] [Google Scholar]
- Go N. The consistency principle in protein structure and pathways of folding. Adv Biophys. 1984;18:149–164. doi: 10.1016/0065-227x(84)90010-8. [DOI] [PubMed] [Google Scholar]
- Greer J. Model for haptoglobin heavy chain based upon structural homology. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3393–3397. doi: 10.1073/pnas.77.6.3393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guenther B., Onrust R., Sali A., O'Donnell M., Kuriyan J. Crystal structure of the delta' subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell. 1997 Oct 31;91(3):335–345. doi: 10.1016/s0092-8674(00)80417-1. [DOI] [PubMed] [Google Scholar]
- Higo J., Collura V., Garnier J. Development of an extended simulated annealing method: application to the modeling of complementary determining regions of immunoglobulins. Biopolymers. 1992 Jan;32(1):33–43. doi: 10.1002/bip.360320106. [DOI] [PubMed] [Google Scholar]
- Huynen M., Doerks T., Eisenhaber F., Orengo C., Sunyaev S., Yuan Y., Bork P. Homology-based fold predictions for Mycoplasma genitalium proteins. J Mol Biol. 1998 Jul 17;280(3):323–326. doi: 10.1006/jmbi.1998.1884. [DOI] [PubMed] [Google Scholar]
- Janin J., Rodier F. Protein-protein interaction at crystal contacts. Proteins. 1995 Dec;23(4):580–587. doi: 10.1002/prot.340230413. [DOI] [PubMed] [Google Scholar]
- Jones D. T. GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J Mol Biol. 1999 Apr 9;287(4):797–815. doi: 10.1006/jmbi.1999.2583. [DOI] [PubMed] [Google Scholar]
- Jones S., Thornton J. M. Prediction of protein-protein interaction sites using patch analysis. J Mol Biol. 1997 Sep 12;272(1):133–143. doi: 10.1006/jmbi.1997.1233. [DOI] [PubMed] [Google Scholar]
- Jones S., van Heyningen P., Berman H. M., Thornton J. M. Protein-DNA interactions: A structural analysis. J Mol Biol. 1999 Apr 16;287(5):877–896. doi: 10.1006/jmbi.1999.2659. [DOI] [PubMed] [Google Scholar]
- Jones T. A., Thirup S. Using known substructures in protein model building and crystallography. EMBO J. 1986 Apr;5(4):819–822. doi: 10.1002/j.1460-2075.1986.tb04287.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
- Kasuya A., Thornton J. M. Three-dimensional structure analysis of PROSITE patterns. J Mol Biol. 1999 Mar 12;286(5):1673–1691. doi: 10.1006/jmbi.1999.2581. [DOI] [PubMed] [Google Scholar]
- Kick E. K., Roe D. C., Skillman A. G., Liu G., Ewing T. J., Sun Y., Kuntz I. D., Ellman J. A. Structure-based design and combinatorial chemistry yield low nanomolar inhibitors of cathepsin D. Chem Biol. 1997 Apr;4(4):297–307. doi: 10.1016/s1074-5521(97)90073-9. [DOI] [PubMed] [Google Scholar]
- Kidera A. Enhanced conformational sampling in Monte Carlo simulations of proteins: application to a constrained peptide. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9886–9889. doi: 10.1073/pnas.92.21.9886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinoshita K., Sadanami K., Kidera A., Go N. Structural motif of phosphate-binding site common to various protein superfamilies: all-against-all structural comparison of protein-mononucleotide complexes. Protein Eng. 1999 Jan;12(1):11–14. doi: 10.1093/protein/12.1.11. [DOI] [PubMed] [Google Scholar]
- Kleywegt G. J. Recognition of spatial motifs in protein structures. J Mol Biol. 1999 Jan 29;285(4):1887–1897. doi: 10.1006/jmbi.1998.2393. [DOI] [PubMed] [Google Scholar]
- Koehl P., Delarue M. A self consistent mean field approach to simultaneous gap closure and side-chain positioning in homology modelling. Nat Struct Biol. 1995 Feb;2(2):163–170. doi: 10.1038/nsb0295-163. [DOI] [PubMed] [Google Scholar]
- Kwasigroch J. M., Chomilier J., Mornon J. P. A global taxonomy of loops in globular proteins. J Mol Biol. 1996 Jun 21;259(4):855–872. doi: 10.1006/jmbi.1996.0363. [DOI] [PubMed] [Google Scholar]
- Lessel U., Schomburg D. Similarities between protein 3-D structures. Protein Eng. 1994 Oct;7(10):1175–1187. doi: 10.1093/protein/7.10.1175. [DOI] [PubMed] [Google Scholar]
- Levitt M. Accurate modeling of protein conformation by automatic segment matching. J Mol Biol. 1992 Jul 20;226(2):507–533. doi: 10.1016/0022-2836(92)90964-l. [DOI] [PubMed] [Google Scholar]
- Levitt M. Molecular dynamics of native protein. II. Analysis and nature of motion. J Mol Biol. 1983 Aug 15;168(3):621–657. doi: 10.1016/s0022-2836(83)80306-4. [DOI] [PubMed] [Google Scholar]
- Lu Y., Valentine J. S. Engineering metal-binding sites in proteins. Curr Opin Struct Biol. 1997 Aug;7(4):495–500. doi: 10.1016/s0959-440x(97)80112-1. [DOI] [PubMed] [Google Scholar]
- Lüthy R., Bowie J. U., Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992 Mar 5;356(6364):83–85. doi: 10.1038/356083a0. [DOI] [PubMed] [Google Scholar]
- Mandal C., Kingery B. D., Anchin J. M., Subramaniam S., Linthicum D. S. ABGEN: a knowledge-based automated approach for antibody structure modeling. Nat Biotechnol. 1996 Mar;14(3):323–328. doi: 10.1038/nbt0396-323. [DOI] [PubMed] [Google Scholar]
- Martin A. C., Cheetham J. C., Rees A. R. Modeling antibody hypervariable loops: a combined algorithm. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9268–9272. doi: 10.1073/pnas.86.23.9268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin A. C., MacArthur M. W., Thornton J. M. Assessment of comparative modeling in CASP2. Proteins. 1997;Suppl 1:14–28. doi: 10.1002/(sici)1097-0134(1997)1+<14::aid-prot4>3.3.co;2-f. [DOI] [PubMed] [Google Scholar]
- Martin A. C., Thornton J. M. Structural families in loops of homologous proteins: automatic classification, modelling and application to antibodies. J Mol Biol. 1996 Nov 15;263(5):800–815. doi: 10.1006/jmbi.1996.0617. [DOI] [PubMed] [Google Scholar]
- Martí-Renom M. A., Stuart A. C., Fiser A., Sánchez R., Melo F., Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000;29:291–325. doi: 10.1146/annurev.biophys.29.1.291. [DOI] [PubMed] [Google Scholar]
- Mas M. T., Smith K. C., Yarmush D. L., Aisaka K., Fine R. M. Modeling the anti-CEA antibody combining site by homology and conformational search. Proteins. 1992 Dec;14(4):483–498. doi: 10.1002/prot.340140409. [DOI] [PubMed] [Google Scholar]
- Mattos C., Petsko G. A., Karplus M. Analysis of two-residue turns in proteins. J Mol Biol. 1994 May 20;238(5):733–747. doi: 10.1006/jmbi.1994.1332. [DOI] [PubMed] [Google Scholar]
- Melo F., Feytmans E. Novel knowledge-based mean force potential at atomic level. J Mol Biol. 1997 Mar 21;267(1):207–222. doi: 10.1006/jmbi.1996.0868. [DOI] [PubMed] [Google Scholar]
- Mezei M. Chameleon sequences in the PDB. Protein Eng. 1998 Jun;11(6):411–414. doi: 10.1093/protein/11.6.411. [DOI] [PubMed] [Google Scholar]
- Mosimann S., Meleshko R., James M. N. A critical assessment of comparative molecular modeling of tertiary structures of proteins. Proteins. 1995 Nov;23(3):301–317. doi: 10.1002/prot.340230305. [DOI] [PubMed] [Google Scholar]
- Moult J., Hubbard T., Fidelis K., Pedersen J. T. Critical assessment of methods of protein structure prediction (CASP): round III. Proteins. 1999;Suppl 3:2–6. [PubMed] [Google Scholar]
- Moult J., James M. N. An algorithm for determining the conformation of polypeptide segments in proteins by systematic search. Proteins. 1986 Oct;1(2):146–163. doi: 10.1002/prot.340010207. [DOI] [PubMed] [Google Scholar]
- Nakajima N., Higo J., Kidera A., Nakamura H. Free energy landscapes of peptides by enhanced conformational sampling. J Mol Biol. 2000 Feb 11;296(1):197–216. doi: 10.1006/jmbi.1999.3440. [DOI] [PubMed] [Google Scholar]
- Oliva B., Bates P. A., Querol E., Avilés F. X., Sternberg M. J. An automated classification of the structure of protein loops. J Mol Biol. 1997 Mar 7;266(4):814–830. doi: 10.1006/jmbi.1996.0819. [DOI] [PubMed] [Google Scholar]
- Pascarella S., Argos P. Analysis of insertions/deletions in protein structures. J Mol Biol. 1992 Mar 20;224(2):461–471. doi: 10.1016/0022-2836(92)91008-d. [DOI] [PubMed] [Google Scholar]
- Pellequer J. L., Chen S. W. Does conformational free energy distinguish loop conformations in proteins? Biophys J. 1997 Nov;73(5):2359–2375. doi: 10.1016/S0006-3495(97)78266-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perona J. J., Craik C. S. Structural basis of substrate specificity in the serine proteases. Protein Sci. 1995 Mar;4(3):337–360. doi: 10.1002/pro.5560040301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
- RAMACHANDRAN G. N., RAMAKRISHNAN C., SASISEKHARAN V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963 Jul;7:95–99. doi: 10.1016/s0022-2836(63)80023-6. [DOI] [PubMed] [Google Scholar]
- Rao U., Teeter M. M. Improvement of turn structure prediction by molecular dynamics: a case study of alpha 1-purothionin. Protein Eng. 1993 Nov;6(8):837–847. doi: 10.1093/protein/6.8.837. [DOI] [PubMed] [Google Scholar]
- Rapp C. S., Friesner R. A. Prediction of loop geometries using a generalized born model of solvation effects. Proteins. 1999 May 1;35(2):173–183. [PubMed] [Google Scholar]
- Reczko M., Martin A. C., Bohr H., Suhai S. Prediction of hypervariable CDR-H3 loop structures in antibodies. Protein Eng. 1995 Apr;8(4):389–395. doi: 10.1093/protein/8.4.389. [DOI] [PubMed] [Google Scholar]
- Ring C. S., Kneller D. G., Langridge R., Cohen F. E. Taxonomy and conformational analysis of loops in proteins. J Mol Biol. 1992 Apr 5;224(3):685–699. doi: 10.1016/0022-2836(92)90553-v. [DOI] [PubMed] [Google Scholar]
- Ring C. S., Sun E., McKerrow J. H., Lee G. K., Rosenthal P. J., Kuntz I. D., Cohen F. E. Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3583–3587. doi: 10.1073/pnas.90.8.3583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ringe D., Petsko G. A. Mapping protein dynamics by X-ray diffraction. Prog Biophys Mol Biol. 1985;45(3):197–235. doi: 10.1016/0079-6107(85)90002-1. [DOI] [PubMed] [Google Scholar]
- Rosenbach D., Rosenfeld R. Simultaneous modeling of multiple loops in proteins. Protein Sci. 1995 Mar;4(3):496–505. doi: 10.1002/pro.5560040316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenfeld R., Zheng Q., Vajda S., DeLisi C. Computing the structure of bound peptides. Application to antigen recognition by class I major histocompatibility complex receptors. J Mol Biol. 1993 Dec 5;234(3):515–521. doi: 10.1006/jmbi.1993.1607. [DOI] [PubMed] [Google Scholar]
- Rufino S. D., Donate L. E., Canard L. H., Blundell T. L. Predicting the conformational class of short and medium size loops connecting regular secondary structures: application to comparative modelling. J Mol Biol. 1997 Mar 28;267(2):352–367. doi: 10.1006/jmbi.1996.0851. [DOI] [PubMed] [Google Scholar]
- Russell R. B., Sasieni P. D., Sternberg M. J. Supersites within superfolds. Binding site similarity in the absence of homology. J Mol Biol. 1998 Oct 2;282(4):903–918. doi: 10.1006/jmbi.1998.2043. [DOI] [PubMed] [Google Scholar]
- Rychlewski L., Zhang B., Godzik A. Fold and function predictions for Mycoplasma genitalium proteins. Fold Des. 1998;3(4):229–238. doi: 10.1016/S1359-0278(98)00034-0. [DOI] [PubMed] [Google Scholar]
- Sali A. 100,000 protein structures for the biologist. Nat Struct Biol. 1998 Dec;5(12):1029–1032. doi: 10.1038/4136. [DOI] [PubMed] [Google Scholar]
- Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
- Samudrala R., Moult J. A graph-theoretic algorithm for comparative modeling of protein structure. J Mol Biol. 1998 May 29;279(1):287–302. doi: 10.1006/jmbi.1998.1689. [DOI] [PubMed] [Google Scholar]
- Sander C., Schneider R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins. 1991;9(1):56–68. doi: 10.1002/prot.340090107. [DOI] [PubMed] [Google Scholar]
- Shenkin P. S., Yarmush D. L., Fine R. M., Wang H. J., Levinthal C. Predicting antibody hypervariable loop conformation. I. Ensembles of random conformations for ringlike structures. Biopolymers. 1987 Dec;26(12):2053–2085. doi: 10.1002/bip.360261207. [DOI] [PubMed] [Google Scholar]
- Shepherd A. J., Gorse D., Thornton J. M. Prediction of the location and type of beta-turns in proteins using neural networks. Protein Sci. 1999 May;8(5):1045–1055. doi: 10.1110/ps.8.5.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sibanda B. L., Blundell T. L., Thornton J. M. Conformation of beta-hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. J Mol Biol. 1989 Apr 20;206(4):759–777. doi: 10.1016/0022-2836(89)90583-4. [DOI] [PubMed] [Google Scholar]
- Sippl M. J. Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol. 1990 Jun 20;213(4):859–883. doi: 10.1016/s0022-2836(05)80269-4. [DOI] [PubMed] [Google Scholar]
- Sippl M. J. Recognition of errors in three-dimensional structures of proteins. Proteins. 1993 Dec;17(4):355–362. doi: 10.1002/prot.340170404. [DOI] [PubMed] [Google Scholar]
- Smith K. C., Honig B. Evaluation of the conformational free energies of loops in proteins. Proteins. 1994 Feb;18(2):119–132. doi: 10.1002/prot.340180205. [DOI] [PubMed] [Google Scholar]
- Sudarsanam S., DuBose R. F., March C. J., Srinivasan S. Modeling protein loops using a phi i + 1, psi i dimer database. Protein Sci. 1995 Jul;4(7):1412–1420. doi: 10.1002/pro.5560040715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Summers N. L., Karplus M. Modeling of globular proteins. A distance-based data search procedure for the construction of insertion/deletion regions and Pro----non-Pro mutations. J Mol Biol. 1990 Dec 20;216(4):991–1016. doi: 10.1016/S0022-2836(99)80016-3. [DOI] [PubMed] [Google Scholar]
- Sánchez R., Sali A. Advances in comparative protein-structure modelling. Curr Opin Struct Biol. 1997 Apr;7(2):206–214. doi: 10.1016/s0959-440x(97)80027-9. [DOI] [PubMed] [Google Scholar]
- Sánchez R., Sali A. Evaluation of comparative protein structure modeling by MODELLER-3. Proteins. 1997;Suppl 1:50–58. doi: 10.1002/(sici)1097-0134(1997)1+<50::aid-prot8>3.3.co;2-w. [DOI] [PubMed] [Google Scholar]
- Sánchez R., Sali A. Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13597–13602. doi: 10.1073/pnas.95.23.13597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sánchez R., Sali A. ModBase: a database of comparative protein structure models. Bioinformatics. 1999 Dec;15(12):1060–1061. doi: 10.1093/bioinformatics/15.12.1060. [DOI] [PubMed] [Google Scholar]
- Tanner J. J., Nell L. J., McCammon J. A. Anti-insulin antibody structure and conformation. II. Molecular dynamics with explicit solvent. Biopolymers. 1992 Jan;32(1):23–32. doi: 10.1002/bip.360320105. [DOI] [PubMed] [Google Scholar]
- Thanki N., Zeelen J. P., Mathieu M., Jaenicke R., Abagyan R. A., Wierenga R. K., Schliebs W. Protein engineering with monomeric triosephosphate isomerase (monoTIM): the modelling and structure verification of a seven-residue loop. Protein Eng. 1997 Feb;10(2):159–167. doi: 10.1093/protein/10.2.159. [DOI] [PubMed] [Google Scholar]
- Topham C. M., McLeod A., Eisenmenger F., Overington J. P., Johnson M. S., Blundell T. L. Fragment ranking in modelling of protein structure. Conformationally constrained environmental amino acid substitution tables. J Mol Biol. 1993 Jan 5;229(1):194–220. doi: 10.1006/jmbi.1993.1018. [DOI] [PubMed] [Google Scholar]
- Tramontano A., Chothia C., Lesk A. M. Structural determinants of the conformations of medium-sized loops in proteins. Proteins. 1989;6(4):382–394. doi: 10.1002/prot.340060405. [DOI] [PubMed] [Google Scholar]
- Tramontano A., Lesk A. M. Common features of the conformations of antigen-binding loops in immunoglobulins and application to modeling loop conformations. Proteins. 1992 Jul;13(3):231–245. doi: 10.1002/prot.340130306. [DOI] [PubMed] [Google Scholar]
- Vajda S., Delisi C. Determining minimum energy conformations of polypeptides by dynamic programming. Biopolymers. 1990 Dec;29(14):1755–1772. doi: 10.1002/bip.360291408. [DOI] [PubMed] [Google Scholar]
- Vasmatzis G., Brower R., Delisi C. Predicting immunoglobulin-like hypervariable loops. Biopolymers. 1994 Dec;34(12):1669–1680. doi: 10.1002/bip.360341211. [DOI] [PubMed] [Google Scholar]
- Wang J., Kollman P. A., Kuntz I. D. Flexible ligand docking: a multistep strategy approach. Proteins. 1999 Jul 1;36(1):1–19. [PubMed] [Google Scholar]
- Wei L., Huang E. S., Altman R. B. Are predicted structures good enough to preserve functional sites? Structure. 1999 Jun 15;7(6):643–650. doi: 10.1016/s0969-2126(99)80085-9. [DOI] [PubMed] [Google Scholar]
- Wintjens R. T., Rooman M. J., Wodak S. J. Automatic classification and analysis of alpha alpha-turn motifs in proteins. J Mol Biol. 1996 Jan 12;255(1):235–253. doi: 10.1006/jmbi.1996.0020. [DOI] [PubMed] [Google Scholar]
- Wojcik J., Mornon J. P., Chomilier J. New efficient statistical sequence-dependent structure prediction of short to medium-sized protein loops based on an exhaustive loop classification. J Mol Biol. 1999 Jun 25;289(5):1469–1490. doi: 10.1006/jmbi.1999.2826. [DOI] [PubMed] [Google Scholar]
- Wu S. J., Dean D. H. Functional significance of loops in the receptor binding domain of Bacillus thuringiensis CryIIIA delta-endotoxin. J Mol Biol. 1996 Feb 2;255(4):628–640. doi: 10.1006/jmbi.1996.0052. [DOI] [PubMed] [Google Scholar]
- Xu L. Z., Sánchez R., Sali A., Heintz N. Ligand specificity of brain lipid-binding protein. J Biol Chem. 1996 Oct 4;271(40):24711–24719. doi: 10.1074/jbc.271.40.24711. [DOI] [PubMed] [Google Scholar]
- Zheng Q., Kyle D. J. Accuracy and reliability of the scaling-relaxation method for loop closure: an evaluation based on extensive and multiple copy conformational samplings. Proteins. 1996 Feb;24(2):209–217. doi: 10.1002/(SICI)1097-0134(199602)24:2<209::AID-PROT7>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
- Zheng Q., Kyle D. J. Multiple copy sampling: rigid versus flexible protein. Proteins. 1994 Aug;19(4):324–329. doi: 10.1002/prot.340190407. [DOI] [PubMed] [Google Scholar]
- Zheng Q., Rosenfeld R., DeLisi C., Kyle D. J. Multiple copy sampling in protein loop modeling: computational efficiency and sensitivity to dihedral angle perturbations. Protein Sci. 1994 Mar;3(3):493–506. doi: 10.1002/pro.5560030315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zheng Q., Rosenfeld R., Vajda S., DeLisi C. Determining protein loop conformation using scaling-relaxation techniques. Protein Sci. 1993 Aug;2(8):1242–1248. doi: 10.1002/pro.5560020806. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Vlijmen H. W., Karplus M. PDB-based protein loop prediction: parameters for selection and methods for optimization. J Mol Biol. 1997 Apr 11;267(4):975–1001. doi: 10.1006/jmbi.1996.0857. [DOI] [PubMed] [Google Scholar]