Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 Apr;166(1):346–348. doi: 10.1128/jb.166.1.346-348.1986

Influence of gyrA mutation on expression of Erwinia chrysanthemi clb genes cloned in Escherichia coli.

F Barras, M Lepelletier, M Chippaux
PMCID: PMC214601  PMID: 3007437

Abstract

Erwinia chrysanthemi clb genes cloned into Nals Escherichia coli allowed growth on cellobiose, arbutin, or salicin. In contrast, Nalr isogenic strains grew only on cellobiose. It is proposed that expression of cloned E. chrysanthemi clb genes is reduced by the E. coli chromosomal gyrA (Nalr) mutation, resulting in apparent segregation of the Clb and Arb Sal characters.

Full text

PDF
346

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barras F., Chambost J. P., Chippaux M. Cellobiose metabolism in Erwinia: genetic study. Mol Gen Genet. 1984;197(3):486–490. doi: 10.1007/BF00329947. [DOI] [PubMed] [Google Scholar]
  2. Chippaux M., Feutrier J., Lepelletier M., Touati-Schwartz D., Pascal M. C. Selection of recA+ recombinant cosmids: an easy method for making recA strains temporarily Rec+, permitting P1-mediated transduction in a recA background and transduction of a recA mutation. Biochem Biophys Res Commun. 1982 Jun 30;106(4):1269–1271. doi: 10.1016/0006-291x(82)91249-9. [DOI] [PubMed] [Google Scholar]
  3. DiNardo S., Voelkel K. A., Sternglanz R., Reynolds A. E., Wright A. Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell. 1982 Nov;31(1):43–51. doi: 10.1016/0092-8674(82)90403-2. [DOI] [PubMed] [Google Scholar]
  4. Drlica K. Biology of bacterial deoxyribonucleic acid topoisomerases. Microbiol Rev. 1984 Dec;48(4):273–289. doi: 10.1128/mr.48.4.273-289.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hildebrand D. C., Schroth M. N. beta-Glucosidase Activity in Phytopathogenic Bacteria. Appl Microbiol. 1964 Nov;12(6):487–491. doi: 10.1128/am.12.6.487-491.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Palmer R. E., Anderson R. L. Cellobiose metabolism in Aerobacter aerogenes. 3. Cleavage of cellobiose monophosphate by a phospho- -glucosidase. J Biol Chem. 1972 Jun 10;247(11):3420–3423. [PubMed] [Google Scholar]
  7. Prasad I., Young B., Schaefler S. Genetic determination of the constitutive biosynthesis of phospho- -glucosidase A in Escherichia coli K-12. J Bacteriol. 1973 Jun;114(3):909–915. doi: 10.1128/jb.114.3.909-915.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Saier M. H., Jr Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: structural, functional, and evolutionary interrelationships. Bacteriol Rev. 1977 Dec;41(4):856–871. doi: 10.1128/br.41.4.856-871.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sanzey B. Modulation of gene expression by drugs affecting deoxyribonucleic acid gyrase. J Bacteriol. 1979 Apr;138(1):40–47. doi: 10.1128/jb.138.1.40-47.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES