Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 May;166(2):528–532. doi: 10.1128/jb.166.2.528-532.1986

Isolation and reconstitution of iron- and manganese-containing superoxide dismutases from Bacteroides thetaiotaomicron.

C D Pennington, E M Gregory
PMCID: PMC214636  PMID: 3700336

Abstract

Superoxide dismutase (SOD) from extracts of anaerobically maintained Bacteroides thetaiotaomicron was a dimer of equally sized 23,000-molecular-weight monomers joined noncovalently. A preparation with a specific activity of 1,200 U/mg contained 1.1 g-atom of Fe, 0.6 g-atom of Zn, and less than 0.05 g-atom of Mn per mol of dimer. The apoprotein, prepared by dialysis of iron-SOD in 5 M guanidinium chloride-20 mM 8-hydroxyquinoline, had no superoxide-scavenging activity when renatured without exogenous metal. Enzymatic activity was restored to the denatured apoprotein by dialysis against either 1 mM Fe(NH4)2 or 1 mM MnCl2 in 20 mM Tris (pH 7.0). The Fe-reconstituted enzyme and the native enzyme were inhibited approximately 50% by 0.2 mM NaN3, whereas the Mn-reconstituted enzyme was inhibited 60% by 10 mM NaN3. Aeration of the anaerobic cells resulted in a fourfold induction of an azide-resistant SOD. The enzyme (43,000 molecular weight) isolated from aerated cells was a dimer of equally sized subunits. The metal content was 1.0 g-atom of Mn, 0.55 g-atom of Fe, and 0.3 g-atom of Zn per mol of dimer. Enzymatic activity of the denatured apoprotein from this enzyme was also restored on addition of either iron or manganese. The constitutive Fe-SOD and the O2-induced Mn-SOD, tested alone and in combination, migrated identically on acrylamide gels, had similar amino acid compositions, and had alanine as the sole N-terminal amino acid. These data are consistent with the synthesis of a single apoprotein in either anaerobically maintained or oxygenated cells. We have observed a similar phenomenon with SOD from Bacteroides fragilis (E. M. Gregory, Arch. Biochem. Biophys. 238:83-89, 1985).

Full text

PDF
532

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asada K., Yoshikawa K., Takahashi M., Maeda Y., Enmanji K. Superoxide dismutases from a blue-green alga, Plectonema boryanum. J Biol Chem. 1975 Apr 25;250(8):2801–2807. [PubMed] [Google Scholar]
  2. Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
  3. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  4. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
  5. Gregory E. M. Characterization of the O2-induced manganese-containing superoxide dismutase from Bacteroides fragilis. Arch Biochem Biophys. 1985 Apr;238(1):83–89. doi: 10.1016/0003-9861(85)90143-2. [DOI] [PubMed] [Google Scholar]
  6. Gregory E. M., Dapper C. H. Isolation of iron-containing superoxide dismutase from Bacteroides fragilis: reconstitution as a Mn-containing enzyme. Arch Biochem Biophys. 1983 Jan;220(1):293–300. doi: 10.1016/0003-9861(83)90413-7. [DOI] [PubMed] [Google Scholar]
  7. Keele B. B., Jr, McCord J. M., Fridovich I. Superoxide dismutase from escherichia coli B. A new manganese-containing enzyme. J Biol Chem. 1970 Nov 25;245(22):6176–6181. [PubMed] [Google Scholar]
  8. Kirby T. W., Lancaster J. R., Jr, Fridovich I. Isolation and characterization of the iron-containing superoxide dismutase of Methanobacterium bryantii. Arch Biochem Biophys. 1981 Aug;210(1):140–148. doi: 10.1016/0003-9861(81)90174-0. [DOI] [PubMed] [Google Scholar]
  9. Kirby T., Blum J., Kahane I., Fridovich I. Distinguishing between Mn-containing and Fe-containing superoxide dismutases in crude extracts of cells. Arch Biochem Biophys. 1980 May;201(2):551–555. doi: 10.1016/0003-9861(80)90544-5. [DOI] [PubMed] [Google Scholar]
  10. Koch A. L. Turbidity measurements of bacterial cultures in some available commercial instruments. Anal Biochem. 1970 Nov;38(1):252–259. doi: 10.1016/0003-2697(70)90174-0. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Marklund S. Purification and characterization of a manganese containing superoxide dismutase from bovine heart mitochondria. Int J Biochem. 1978;9(5):299–306. doi: 10.1016/0020-711x(78)90101-5. [DOI] [PubMed] [Google Scholar]
  14. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  15. Meier B., Barra D., Bossa F., Calabrese L., Rotilio G. Synthesis of either Fe- or Mn-superoxide dismutase with an apparently identical protein moiety by an anaerobic bacterium dependent on the metal supplied. J Biol Chem. 1982 Dec 10;257(23):13977–13980. [PubMed] [Google Scholar]
  16. Misra H. P., Fridovich I. Inhibition of superoxide dismutases by azide. Arch Biochem Biophys. 1978 Aug;189(2):317–322. doi: 10.1016/0003-9861(78)90218-7. [DOI] [PubMed] [Google Scholar]
  17. Moody C. S., Hassan H. M. Anaerobic biosynthesis of the manganese-containing superoxide dismutase in Escherichia coli. J Biol Chem. 1984 Oct 25;259(20):12821–12825. [PubMed] [Google Scholar]
  18. Puget K., Michelson A. M. Isolation of a new copper-containing superoxide dismutase bacteriocuprein. Biochem Biophys Res Commun. 1974 Jun 4;58(3):830–838. doi: 10.1016/s0006-291x(74)80492-4. [DOI] [PubMed] [Google Scholar]
  19. Pugh S. Y., Fridovich I. Induction of superoxide dismutases in Escherichia coli B by metal chelators. J Bacteriol. 1985 Apr;162(1):196–202. doi: 10.1128/jb.162.1.196-202.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Searcy K. B., Searcy D. G. Superoxide dismutase from the Archaebacterium Thermoplasma acidophilum. Biochim Biophys Acta. 1981 Aug 28;670(1):39–46. doi: 10.1016/0005-2795(81)90046-5. [DOI] [PubMed] [Google Scholar]
  21. Steinman H. M. Copper-zinc superoxide dismutase from Caulobacter crescentus CB15. A novel bacteriocuprein form of the enzyme. J Biol Chem. 1982 Sep 10;257(17):10283–10293. [PubMed] [Google Scholar]
  22. Yost F. J., Jr, Fridovich I. An iron-containing superoxide dismutase from Escherichia coli. J Biol Chem. 1973 Jul 25;248(14):4905–4908. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES