Skip to main content
The British Journal of Cancer. Supplement logoLink to The British Journal of Cancer. Supplement
. 1987 Jun;8:66–73.

Free radical-mediated reperfusion injury: a selective review.

G B Bulkley 1
PMCID: PMC2149484  PMID: 3307876

Abstract

Tissue damage as a consequence of ischemia is a major medical problem in an industrialized society. Whereas the conventional view has attributed this injury process to ischemia itself, recent studies have found that a variable, but often substantial proportion of the injury is caused by toxic oxygen metabolites that are generated from xanthine oxidase at the time of reperfusion. This mechanism was first identified and characterized in a model of moderately mild partial vascular occlusion in the feline small intestine. Strikingly similar mechanisms have been subsequently confirmed as the basis for ischemia/reperfusion injury in the stomach, pancreas, liver, skin, skeletal muscle, heart, lung, kidney and central nervous system. The potential for clinical application of this concept is related primarily to that proportion of the total post-ischemic injury that is due to this reperfusion mechanism, set against the proportion due to ischemia itself. Ironically, in clinical cases of intestinal ischemia the reperfusion component appears to be proportionately small, and the potential for treatment of ischemic bowel disease is correspondingly limited. On the other hand, there is reason to expect that the ablation of free radical-mediated reperfusion injury, something that can be readily achieved through non-toxic means, may provide substantial benefit for the treatment of ischemic renal disease, myocardial infarction, stroke, cardiac arrest, and of organs preserved for transplantation.

Full text

PDF
66

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adkison D., Höllwarth M. E., Benoit J. N., Parks D. A., McCord J. M., Granger D. N. Role of free radicals in ischemia-reperfusion injury to the liver. Acta Physiol Scand Suppl. 1986;548:101–107. [PubMed] [Google Scholar]
  2. Ahrén C., Haglund U. Mucosal lesions in the small intestine of the cat during low flow. Acta Physiol Scand. 1973 Aug;88(4):541–550. doi: 10.1111/j.1748-1716.1973.tb05483.x. [DOI] [PubMed] [Google Scholar]
  3. Baker G. L., Corry R. J., Autor A. P. Oxygen free radical induced damage in kidneys subjected to warm ischemia and reperfusion. Protective effect of superoxide dismutase. Ann Surg. 1985 Nov;202(5):628–641. doi: 10.1097/00000658-198511000-00016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Battelli M. G., Corte E. D., Stirpe F. Xanthine oxidase type D (dehydrogenase) in the intestine and other organs of the rat. Biochem J. 1972 Feb;126(3):747–749. doi: 10.1042/bj1260747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burton K. P., McCord J. M., Ghai G. Myocardial alterations due to free-radical generation. Am J Physiol. 1984 Jun;246(6 Pt 2):H776–H783. doi: 10.1152/ajpheart.1984.246.6.H776. [DOI] [PubMed] [Google Scholar]
  6. Coles J. C., Ahmed S. N., Mehta H. U., Kaufmann J. C. Role of free radical scavenger in protection of spinal cord during ischemia. Ann Thorac Surg. 1986 May;41(5):551–556. doi: 10.1016/s0003-4975(10)63040-8. [DOI] [PubMed] [Google Scholar]
  7. Gardner T. J., Stewart J. R., Casale A. S., Downey J. M., Chambers D. E. Reduction of myocardial ischemic injury with oxygen-derived free radical scavengers. Surgery. 1983 Sep;94(3):423–427. [PubMed] [Google Scholar]
  8. Granger D. N., Rutili G., McCord J. M. Superoxide radicals in feline intestinal ischemia. Gastroenterology. 1981 Jul;81(1):22–29. [PubMed] [Google Scholar]
  9. Grøgaard B., Parks D. A., Granger D. N., McCord J. M., Forsberg J. O. Effects of ischemia and oxygen radicals on mucosal albumin clearance in intestine. Am J Physiol. 1982 May;242(5):G448–G454. doi: 10.1152/ajpgi.1982.242.5.G448. [DOI] [PubMed] [Google Scholar]
  10. Im M. J., Manson P. N., Bulkley G. B., Hoopes J. E. Effects of superoxide dismutase and allopurinol on the survival of acute island skin flaps. Ann Surg. 1985 Mar;201(3):357–359. doi: 10.1097/00000658-198503000-00018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Im M. J., Shen W. H., Pak C. J., Manson P. N., Bulkley G. B., Hoopes J. E. Effect of allopurinol on the survival of hyperemic island skin flaps. Plast Reconstr Surg. 1984 Feb;73(2):276–278. doi: 10.1097/00006534-198402000-00023. [DOI] [PubMed] [Google Scholar]
  12. Itoh M., Guth P. H. Role of oxygen-derived free radicals in hemorrhagic shock-induced gastric lesions in the rat. Gastroenterology. 1985 May;88(5 Pt 1):1162–1167. doi: 10.1016/s0016-5085(85)80075-5. [DOI] [PubMed] [Google Scholar]
  13. Jolly S. R., Kane W. J., Bailie M. B., Abrams G. D., Lucchesi B. R. Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circ Res. 1984 Mar;54(3):277–285. doi: 10.1161/01.res.54.3.277. [DOI] [PubMed] [Google Scholar]
  14. Jones H. P., Grisham M. B., Bose S. K., Shannon V. A., Schott A., McCord J. M. Effect of allopurinol on neutrophil superoxide production, chemotaxis, or degranulation. Biochem Pharmacol. 1985 Oct 15;34(20):3673–3676. doi: 10.1016/0006-2952(85)90229-1. [DOI] [PubMed] [Google Scholar]
  15. Korthuis R. J., Granger D. N., Townsley M. I., Taylor A. E. The role of oxygen-derived free radicals in ischemia-induced increases in canine skeletal muscle vascular permeability. Circ Res. 1985 Oct;57(4):599–609. doi: 10.1161/01.res.57.4.599. [DOI] [PubMed] [Google Scholar]
  16. Koyama I., Bulkley G. B., Williams G. M., Im M. J. The role of oxygen free radicals in mediating the reperfusion injury of cold-preserved ischemic kidneys. Transplantation. 1985 Dec;40(6):590–595. doi: 10.1097/00007890-198512000-00003. [DOI] [PubMed] [Google Scholar]
  17. Lee K. R., Cronenwett J. L., Shlafer M., Corpron C., Zelenock G. B. Effect of superoxide dismutase plus catalase on Ca2+ transport in ischemic and reperfused skeletal muscle. J Surg Res. 1987 Jan;42(1):24–32. doi: 10.1016/0022-4804(87)90060-6. [DOI] [PubMed] [Google Scholar]
  18. Manson P. N., Anthenelli R. M., Im M. J., Bulkley G. B., Hoopes J. E. The role of oxygen-free radicals in ischemic tissue injury in island skin flaps. Ann Surg. 1983 Jul;198(1):87–90. doi: 10.1097/00000658-198307000-00017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  20. McCord J. M., Fridovich I. The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem. 1968 Nov 10;243(21):5753–5760. [PubMed] [Google Scholar]
  21. McCord J. M., Roy R. S. The pathophysiology of superoxide: roles in inflammation and ischemia. Can J Physiol Pharmacol. 1982 Nov;60(11):1346–1352. doi: 10.1139/y82-201. [DOI] [PubMed] [Google Scholar]
  22. McCord J. M. The superoxide free radical: its biochemistry and pathophysiology. Surgery. 1983 Sep;94(3):412–414. [PubMed] [Google Scholar]
  23. Nordström G., Seeman T., Hasselgren P. O. Beneficial effect of allopurinol in liver ischemia. Surgery. 1985 Jun;97(6):679–684. [PubMed] [Google Scholar]
  24. Paller M. S., Hoidal J. R., Ferris T. F. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest. 1984 Oct;74(4):1156–1164. doi: 10.1172/JCI111524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Parks D. A., Bulkley G. B., Granger D. N., Hamilton S. R., McCord J. M. Ischemic injury in the cat small intestine: role of superoxide radicals. Gastroenterology. 1982 Jan;82(1):9–15. [PubMed] [Google Scholar]
  26. Parks D. A., Bulkley G. B., Granger D. N. Role of oxygen free radicals in shock, ischemia, and organ preservation. Surgery. 1983 Sep;94(3):428–432. [PubMed] [Google Scholar]
  27. Parks D. A., Bulkley G. B., Granger D. N. Role of oxygen-derived free radicals in digestive tract diseases. Surgery. 1983 Sep;94(3):415–422. [PubMed] [Google Scholar]
  28. Parks D. A., Granger D. N., Bulkley G. B., Shah A. K. Soybean trypsin inhibitor attenuates ischemic injury to the feline small intestine. Gastroenterology. 1985 Jul;89(1):6–12. doi: 10.1016/0016-5085(85)90738-3. [DOI] [PubMed] [Google Scholar]
  29. Parks D. A., Granger D. N. Ischemia-induced vascular changes: role of xanthine oxidase and hydroxyl radicals. Am J Physiol. 1983 Aug;245(2):G285–G289. doi: 10.1152/ajpgi.1983.245.2.G285. [DOI] [PubMed] [Google Scholar]
  30. Parks D. A., Shah A. K., Granger D. N. Oxygen radicals: effects on intestinal vascular permeability. Am J Physiol. 1984 Aug;247(2 Pt 1):G167–G170. doi: 10.1152/ajpgi.1984.247.2.G167. [DOI] [PubMed] [Google Scholar]
  31. Perry M. A., Wadhwa S., Parks D. A., Pickard W., Granger D. N. Role of oxygen radicals in ischemia-induced lesions in the cat stomach. Gastroenterology. 1986 Feb;90(2):362–367. doi: 10.1016/0016-5085(86)90933-9. [DOI] [PubMed] [Google Scholar]
  32. Sanfey H., Bulkley G. B., Cameron J. L. The pathogenesis of acute pancreatitis. The source and role of oxygen-derived free radicals in three different experimental models. Ann Surg. 1985 May;201(5):633–639. doi: 10.1097/00000658-198505000-00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sanfey H., Bulkley G. B., Cameron J. L. The role of oxygen-derived free radicals in the pathogenesis of acute pancreatitis. Ann Surg. 1984 Oct;200(4):405–413. doi: 10.1097/00000658-198410000-00003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sanfey H., Sarr M. G., Bulkley G. B., Cameron J. L. Oxygen-derived free radicals and acute pancreatitis: a review. Acta Physiol Scand Suppl. 1986;548:109–118. [PubMed] [Google Scholar]
  35. Shlafer M., Kane P. F., Kirsh M. M. Superoxide dismutase plus catalase enhances the efficacy of hypothermic cardioplegia to protect the globally ischemic, reperfused heart. J Thorac Cardiovasc Surg. 1982 Jun;83(6):830–839. [PubMed] [Google Scholar]
  36. Stewart J. R., Blackwell W. H., Crute S. L., Loughlin V., Greenfield L. J., Hess M. L. Inhibition of surgically induced ischemia/reperfusion injury by oxygen free radical scavengers. J Thorac Cardiovasc Surg. 1983 Aug;86(2):262–272. [PubMed] [Google Scholar]
  37. Walker P. M., Lindsay T. F., Labbe R., Mickle D. A., Romaschin A. D. Salvage of skeletal muscle with free radical scavengers. J Vasc Surg. 1987 Jan;5(1):68–75. doi: 10.1067/mva.1987.avs0050068. [DOI] [PubMed] [Google Scholar]

Articles from The British Journal of Cancer. Supplement are provided here courtesy of Cancer Research UK

RESOURCES