Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Mar;161(3):921–927. doi: 10.1128/jb.161.3.921-927.1985

Pigment-protein complexes from Rhodopseudomonas palustris: isolation, characterization, and reconstitution into liposomes.

A R Varga, L A Staehelin
PMCID: PMC214985  PMID: 3972775

Abstract

We have employed detergent solubilization and sucrose density gradient centrifugation to obtain pigment-protein complexes from Rhodopseudomonas palustris. Two types of detergent buffers were used, containing either octyl-beta-glucopyranoside (OG) plus sodium dodecyl sulfate (SDS) or OG alone. The fractions thus obtained were analyzed spectrophotometrically and by polyacrylamide gel electrophoresis to determine their pigment and protein composition. OG-SDS solubilization yields four fractions. The least dense of these fractions (OG-SDS a and b) are nonspecific mixtures of peptides and pigments. The next fraction, OG-SDS c, is an accessory light-harvesting complex, LHII, called B800-850. The largest particle, OG-SDS d, is a combination of reaction center (RC) and primary light-harvesting complex (LHI), B880. Solubilization using OG alone yields one fraction, a single large complex consisting of RC, LHI, and LHII. We have inserted the two large OG-SDS complexes and the OG complex into phospholipid liposomes to determine the size of such complexes in freeze-fractured membranes. On the basis of morphological, biochemical, and available biophysical data, we propose the following models for pigment-protein complexes in R. palustris membranes: 5-nm particles as free RC or LHI tetramers, 7.5-nm particles as LHI or LHII octamers (or both); 10-nm particles as RC-LHI core complexes (1 RC plus 12 LHI) or large LHII oligomers (or both), and large particles of 12.5 and 15 nm and LHII associated with the RC-LHI core complex.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann R. C., Gillies K., Takemoto J. Y. Membrane topography of the photosynthetic reaction center polypeptides of Rhodopseudomonas sphaeroides. Biochemistry. 1981 Aug 4;20(16):4590–4596. doi: 10.1021/bi00519a012. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Camm E. L., Green B. R. Fractionation of Thylakoid Membranes with the Nonionic Detergent Octyl-beta-d-glucopyranoside: RESOLUTION OF CHLOROPHYLL-PROTEIN COMPLEX II INTO TWO CHLOROPHYLL-PROTEIN COMPLEXES. Plant Physiol. 1980 Sep;66(3):428–432. doi: 10.1104/pp.66.3.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen L. K., Kaplan S. Characterization of the three major intracytoplasmic membrane polypeptides isolated from Rhodopseudomonas sphaeroides. J Biol Chem. 1981 Jun 10;256(11):5909–5915. [PubMed] [Google Scholar]
  5. Delepelaire P., Chua N. H. Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of thylakoid membranes at 4 degrees C: Characterizations of two additional chlorophyll a-protein complexes. Proc Natl Acad Sci U S A. 1979 Jan;76(1):111–115. doi: 10.1073/pnas.76.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dunkley P. R., Anderson J. M. The light-harvesting chlorophyll a/b-protein complex from barley thylakoid membranes. Polypeptide composition and characterization of an oligomer. Biochim Biophys Acta. 1979 Jan 11;545(1):174–187. [PubMed] [Google Scholar]
  7. Firsow N. N., Drews G. Differentiation of the intracytoplasmic membrane of Rhodopseudomonas palustris induced by variations of oxygen partial pressure or light intensity. Arch Microbiol. 1977 Dec 15;115(3):299–306. doi: 10.1007/BF00446456. [DOI] [PubMed] [Google Scholar]
  8. Glazer A. N. Comparative biochemistry of photosynthetic light-harvesting systems. Annu Rev Biochem. 1983;52:125–157. doi: 10.1146/annurev.bi.52.070183.001013. [DOI] [PubMed] [Google Scholar]
  9. Hayashi H., Nakano M., Morita S. Comparative studies of protein properties and bacteriochlorophyll contents of bacteriochlorophyll-protein complexes from spectrally different types of Rhodopseudomonas palustris. J Biochem. 1982 Dec;92(6):1805–1811. doi: 10.1093/oxfordjournals.jbchem.a134110. [DOI] [PubMed] [Google Scholar]
  10. Henderson R., Unwin P. N. Three-dimensional model of purple membrane obtained by electron microscopy. Nature. 1975 Sep 4;257(5521):28–32. doi: 10.1038/257028a0. [DOI] [PubMed] [Google Scholar]
  11. Hunter C. N., Pennoyer J. D., Niederman R. A. Assembly and structural organization of pigment-protein complexes in membranes of Rhodopseudomonas sphaeroides. Prog Clin Biol Res. 1982;102(Pt B):257–265. [PubMed] [Google Scholar]
  12. Jacob J. S., Miller K. R. Structure of a bacterial photosynthetic membrane. Isolation, polypeptide composition, and selective proteolysis. Arch Biochem Biophys. 1983 May;223(1):282–290. doi: 10.1016/0003-9861(83)90593-3. [DOI] [PubMed] [Google Scholar]
  13. Jay F., Lambillotte M., Mühlethaler K. Localisation of Rhodopseudomonas viridis reaction centre and light harvesting proteins using ferritin-antibody labelling. Eur J Cell Biol. 1983 Mar;30(1):1–8. [PubMed] [Google Scholar]
  14. Kendall-Tobias M. W., Seibert M. A rapid procedure for the isolation and purification of photosynthetic reaction centers from Rhodopseudomonas sphaeroides R-26. Arch Biochem Biophys. 1982 Jun;216(1):255–258. doi: 10.1016/0003-9861(82)90210-7. [DOI] [PubMed] [Google Scholar]
  15. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  16. Niederman R. A., Mallon D. E., Langan J. J. Membranes of Rhodopseudomonas sphaeroides. IV. Assembly of chromatophores in low-aeration cell suspensions. Biochim Biophys Acta. 1976 Aug 13;440(2):429–447. doi: 10.1016/0005-2728(76)90076-1. [DOI] [PubMed] [Google Scholar]
  17. Rivas E., Reiss-Husson F., le Maire M. Physicochemical properties of detergent-solubilized photochemical reaction centers from two strains of Rhodopseudomonas spheroides. Biochemistry. 1980 Jun 24;19(13):2943–2950. doi: 10.1021/bi00554a020. [DOI] [PubMed] [Google Scholar]
  18. Shiozawa J. A., Welte W., Hodapp N., Drews G. Studies on the size and composition of the isolated light-harvesting B800-850 pigment-protein complex of Rhodopseudomonas capsulata. Arch Biochem Biophys. 1982 Feb;213(2):473–485. doi: 10.1016/0003-9861(82)90573-2. [DOI] [PubMed] [Google Scholar]
  19. Staehelin L. A. Reversible particle movements associated with unstacking and restacking of chloroplast membranes in vitro. J Cell Biol. 1976 Oct;71(1):136–158. doi: 10.1083/jcb.71.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tadros M. H., Suter F., Seydewitz H. H., Witt I., Zuber H., Drews G. Isolation and complete amino-acid sequence of the small polypeptide from light-harvesting pigment-protein complex I (B870) of Rhodopseudomonas capsulata. Eur J Biochem. 1984 Jan 2;138(1):209–212. doi: 10.1111/j.1432-1033.1984.tb07902.x. [DOI] [PubMed] [Google Scholar]
  21. Theiler R., Suter F., Wiemken V., Zuber H. The light-harvesting polypeptides of Rhodopseudomonas sphaeroides R-26.1. I. Isolation, purification and sequence analyses. Hoppe Seylers Z Physiol Chem. 1984 Jul;365(7):703–719. doi: 10.1515/bchm2.1984.365.2.703. [DOI] [PubMed] [Google Scholar]
  22. Thomas P. E., Ryan D., Levin W. An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem. 1976 Sep;75(1):168–176. doi: 10.1016/0003-2697(76)90067-1. [DOI] [PubMed] [Google Scholar]
  23. Valkirs G. E., Feher G. Topography of reaction center subunits in the membrane of the photosynthetic bacterium, rhodopseudomonas sphaeroides. J Cell Biol. 1982 Oct;95(1):179–188. doi: 10.1083/jcb.95.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Varga A. R., Staehelin L. A. Spatial differentiation in photosynthetic and non-photosynthetic membranes of Rhodopseudomonas palustris. J Bacteriol. 1983 Jun;154(3):1414–1430. doi: 10.1128/jb.154.3.1414-1430.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Williams J. C., Steiner L. A., Ogden R. C., Simon M. I., Feher G. Primary structure of the M subunit of the reaction center from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6505–6509. doi: 10.1073/pnas.80.21.6505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Youvan D. C., Bylina E. J., Alberti M., Begusch H., Hearst J. E. Nucleotide and deduced polypeptide sequences of the photosynthetic reaction-center, B870 antenna, and flanking polypeptides from R. capsulata. Cell. 1984 Jul;37(3):949–957. doi: 10.1016/0092-8674(84)90429-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES