Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1998;77(1):147–152. doi: 10.1038/bjc.1998.23

Overexpression of the rhoC gene correlates with progression of ductal adenocarcinoma of the pancreas.

H Suwa 1, G Ohshio 1, T Imamura 1, G Watanabe 1, S Arii 1, M Imamura 1, S Narumiya 1, H Hiai 1, M Fukumoto 1
PMCID: PMC2151257  PMID: 9459160

Abstract

It has been reported that the rho genes, which consist of a ras-related small GTPase protein family, regulate cytoskeletal structures and have the potential to transform cultured cells. To investigate the biological relevance of the rho genes in pancreatic carcinogenesis, we examined expressions of the rhoA, B and C genes by polymerase chain reaction after reverse transcription (RT-PCR) in 33 cases of ductal adenocarcinoma of the pancreas. In addition, mutations of the K-ras, rhoA, B and C genes were studied in the same series of tumour tissues to correlate with rho gene expressions. The expression levels of the rhoC gene were significantly higher in tumours than in non-malignant portions (P < 0.001). Metastatic lesions overexpressed the rhoC gene compared with primary tumours (P < 0.05). Carcinoma tissues with perineural invasion and lymph node metastasis exhibited significantly higher expressions of the rhoC gene than tumours without these manifestations (P < 0.001 and P < 0.05 respectively). Overexpression of the rhoC gene significantly correlated with poorer prognosis of patients with pancreatic adenocarcinoma (P < 0.05). In contrast, the expression levels of the rhoA and B genes showed no significant relationship with clinicopathological findings. Mutation was not found either in the rhoA, B or C gene sequences examined. K-ras gene mutation, detected in 27 out of 33 (81.8%) cases, did not affect the expression levels in any of the rho genes. These suggest that elevated expression of the rhoC gene may be involved in the progression of pancreatic carcinoma independent of K-ras gene activation.

Full text

PDF
151

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almoguera C., Shibata D., Forrester K., Martin J., Arnheim N., Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell. 1988 May 20;53(4):549–554. doi: 10.1016/0092-8674(88)90571-5. [DOI] [PubMed] [Google Scholar]
  2. Arao S., Suwa H., Mandai M., Tashiro H., Miyazaki K., Okamura H., Nomura H., Hiai H., Fukumoto M. Expression of multidrug resistance gene and localization of P-glycoprotein in human primary ovarian cancer. Cancer Res. 1994 Mar 1;54(5):1355–1359. [PubMed] [Google Scholar]
  3. Avraham H., Weinberg R. A. Characterization and expression of the human rhoH12 gene product. Mol Cell Biol. 1989 May;9(5):2058–2066. doi: 10.1128/mcb.9.5.2058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bar-Sagi D., Feramisco J. R. Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science. 1986 Sep 5;233(4768):1061–1068. doi: 10.1126/science.3090687. [DOI] [PubMed] [Google Scholar]
  5. Barton C. M., Staddon S. L., Hughes C. M., Hall P. A., O'Sullivan C., Klöppel G., Theis B., Russell R. C., Neoptolemos J., Williamson R. C. Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer. Br J Cancer. 1991 Dec;64(6):1076–1082. doi: 10.1038/bjc.1991.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boguski M. S., McCormick F. Proteins regulating Ras and its relatives. Nature. 1993 Dec 16;366(6456):643–654. doi: 10.1038/366643a0. [DOI] [PubMed] [Google Scholar]
  7. Chardin P., Madaule P., Tavitian A. Coding sequence of human rho cDNAs clone 6 and clone 9. Nucleic Acids Res. 1988 Mar 25;16(6):2717–2717. doi: 10.1093/nar/16.6.2717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hall A. The cellular functions of small GTP-binding proteins. Science. 1990 Aug 10;249(4969):635–640. doi: 10.1126/science.2116664. [DOI] [PubMed] [Google Scholar]
  9. Hruban R. H., van Mansfeld A. D., Offerhaus G. J., van Weering D. H., Allison D. C., Goodman S. N., Kensler T. W., Bose K. K., Cameron J. L., Bos J. L. K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol. 1993 Aug;143(2):545–554. [PMC free article] [PubMed] [Google Scholar]
  10. Höhne M. W., Halatsch M. E., Kahl G. F., Weinel R. J. Frequent loss of expression of the potential tumor suppressor gene DCC in ductal pancreatic adenocarcinoma. Cancer Res. 1992 May 1;52(9):2616–2619. [PubMed] [Google Scholar]
  11. Imamura F., Shinkai K., Mukai M., Yoshioka K., Komagome R., Iwasaki T., Akedo H. rho-Mediated protein tyrosine phosphorylation in lysophosphatidic-acid-induced tumor-cell invasion. Int J Cancer. 1996 Mar 1;65(5):627–632. doi: 10.1002/(SICI)1097-0215(19960301)65:5<627::AID-IJC12>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  12. Jähner D., Hunter T. The ras-related gene rhoB is an immediate-early gene inducible by v-Fps, epidermal growth factor, and platelet-derived growth factor in rat fibroblasts. Mol Cell Biol. 1991 Jul;11(7):3682–3690. doi: 10.1128/mcb.11.7.3682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Khosravi-Far R., Der C. J. The Ras signal transduction pathway. Cancer Metastasis Rev. 1994 Mar;13(1):67–89. doi: 10.1007/BF00690419. [DOI] [PubMed] [Google Scholar]
  14. Moscow J. A., He R., Gnarra J. R., Knutsen T., Weng Y., Zhao W. P., Whang-Peng J., Linehan W. M., Cowan K. H. Examination of human tumors for rhoA mutations. Oncogene. 1994 Jan;9(1):189–194. [PubMed] [Google Scholar]
  15. Nusrat A., Giry M., Turner J. R., Colgan S. P., Parkos C. A., Carnes D., Lemichez E., Boquet P., Madara J. L. Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10629–10633. doi: 10.1073/pnas.92.23.10629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Olson M. F. Guanine nucleotide exchange factors for the Rho GTPases: a role in human disease? J Mol Med (Berl) 1996 Oct;74(10):563–571. doi: 10.1007/s001090050060. [DOI] [PubMed] [Google Scholar]
  17. Orita M., Iwahana H., Kanazawa H., Hayashi K., Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2766–2770. doi: 10.1073/pnas.86.8.2766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Prendergast G. C., Khosravi-Far R., Solski P. A., Kurzawa H., Lebowitz P. F., Der C. J. Critical role of Rho in cell transformation by oncogenic Ras. Oncogene. 1995 Jun 15;10(12):2289–2296. [PubMed] [Google Scholar]
  19. Ridley A. J., Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992 Aug 7;70(3):389–399. doi: 10.1016/0092-8674(92)90163-7. [DOI] [PubMed] [Google Scholar]
  20. Robertson D., Paterson H. F., Adamson P., Hall A., Monaghan P. Ultrastructural localization of ras-related proteins using epitope-tagged plasmids. J Histochem Cytochem. 1995 May;43(5):471–480. doi: 10.1177/43.5.7537292. [DOI] [PubMed] [Google Scholar]
  21. Scarpa A., Capelli P., Mukai K., Zamboni G., Oda T., Iacono C., Hirohashi S. Pancreatic adenocarcinomas frequently show p53 gene mutations. Am J Pathol. 1993 May;142(5):1534–1543. [PMC free article] [PubMed] [Google Scholar]
  22. Seymour A. B., Hruban R. H., Redston M., Caldas C., Powell S. M., Kinzler K. W., Yeo C. J., Kern S. E. Allelotype of pancreatic adenocarcinoma. Cancer Res. 1994 May 15;54(10):2761–2764. [PubMed] [Google Scholar]
  23. Smit V. T., Boot A. J., Smits A. M., Fleuren G. J., Cornelisse C. J., Bos J. L. KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res. 1988 Aug 25;16(16):7773–7782. doi: 10.1093/nar/16.16.7773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Suwa H., Yoshimura T., Yamaguchi N., Kanehira K., Manabe T., Imamura M., Hiai H., Fukumoto M. K-ras and p53 alterations in genomic DNA and transcripts of human pancreatic adenocarcinoma cell lines. Jpn J Cancer Res. 1994 Oct;85(10):1005–1014. doi: 10.1111/j.1349-7006.1994.tb02898.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Takaishi K., Sasaki T., Kato M., Yamochi W., Kuroda S., Nakamura T., Takeichi M., Takai Y. Involvement of Rho p21 small GTP-binding protein and its regulator in the HGF-induced cell motility. Oncogene. 1994 Jan;9(1):273–279. [PubMed] [Google Scholar]
  26. Warshaw A. L., Fernández-del Castillo C. Pancreatic carcinoma. N Engl J Med. 1992 Feb 13;326(7):455–465. doi: 10.1056/NEJM199202133260706. [DOI] [PubMed] [Google Scholar]
  27. Watanabe G., Saito Y., Madaule P., Ishizaki T., Fujisawa K., Morii N., Mukai H., Ono Y., Kakizuka A., Narumiya S. Protein kinase N (PKN) and PKN-related protein rhophilin as targets of small GTPase Rho. Science. 1996 Feb 2;271(5249):645–648. doi: 10.1126/science.271.5249.645. [DOI] [PubMed] [Google Scholar]
  28. Yeramian P., Chardin P., Madaule P., Tavitian A. Nucleotide sequence of human rho cDNA clone 12. Nucleic Acids Res. 1987 Feb 25;15(4):1869–1869. doi: 10.1093/nar/15.4.1869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yoshioka K., Imamura F., Shinkai K., Miyoshi J., Ogawa H., Mukai M., Komagome R., Akedo H. Participation of rhop21 in serum-dependent invasion by rat ascites hepatoma cells. FEBS Lett. 1995 Sep 18;372(1):25–28. doi: 10.1016/0014-5793(95)00937-5. [DOI] [PubMed] [Google Scholar]
  30. de Cremoux P., Gauville C., Closson V., Linares G., Calvo F., Tavitian A., Olofsson B. EGF modulation of the ras-related rhoB gene expression in human breast-cancer cell lines. Int J Cancer. 1994 Nov 1;59(3):408–415. doi: 10.1002/ijc.2910590320. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES