Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Apr;158(1):63–68. doi: 10.1128/jb.158.1.63-68.1984

Rapid turnover of mannitol-1-phosphate in Escherichia coli.

H Rosenberg, S M Pearce, C M Hardy, P A Jacomb
PMCID: PMC215379  PMID: 6425270

Abstract

The phosphate moiety of D-mannitol-1-phosphate in Escherichia coli is subject to rapid turnover and is in close equilibrium with Pi and the phosphorus of fructose-1,6-bisphosphate. These three compounds account for the bulk of 32P label found in cells after several minutes of uptake of 32Pi and mannitol-1-phosphate represents some 30% of this label. Mannitol-1-phosphate occurs in E. coli grown on a variety of carbon sources, in the absence of D-mannitol, and is synthesized de novo even in mutants lacking mannitol-1-phosphate dehydrogenase. The mannitol moiety of mannitol-1-phosphate was not affected during the total chase of the P moiety, which exchanged with a half-life of about 30 s. These findings suggest that the rapid equilibration of the phosphorus is a function of an enzyme, possibly a component of the phosphotransferase system, capable of forming a complex that allows the exchange of the phosphate without the equilibration of the mannitol moiety with free mannitol.

Full text

PDF
65

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Edwards K. G., Blumenthal H. J., Khan M., Slodki M. E. Intracellular mannitol, a product of glucose metabolism in staphylococci. J Bacteriol. 1981 Jun;146(3):1020–1029. doi: 10.1128/jb.146.3.1020-1029.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. HELLE K. B., KLUNGSOYR L. Mannitol 1-phosphate formation in Escherichia coli during glucose utilization. Biochim Biophys Acta. 1962 Dec 17;65:461–471. doi: 10.1016/0006-3002(62)90448-1. [DOI] [PubMed] [Google Scholar]
  3. Hult K., Gatenbeck S. Production of NADPH in the mannitol cycle and its relation to polyketide formation in Alternaria alternata. Eur J Biochem. 1978 Aug 1;88(2):607–612. doi: 10.1111/j.1432-1033.1978.tb12487.x. [DOI] [PubMed] [Google Scholar]
  4. Hüdig H., Hengstenberg W. The bacterial phosphoenolpyruvate dependent phosphotransferase system (PTS): solubilisation and kinetic parameters of the glucose-specific membrane bound enzyme II component of Streptococcus faecalis. FEBS Lett. 1980 May 19;114(1):103–106. doi: 10.1016/0014-5793(80)80869-6. [DOI] [PubMed] [Google Scholar]
  5. Kiser R. C., Niehaus W. G., Jr Purification and kinetic characterization of mannitol-1-phosphate dehydrogenase from Aspergillus niger. Arch Biochem Biophys. 1981 Oct 15;211(2):613–621. doi: 10.1016/0003-9861(81)90496-3. [DOI] [PubMed] [Google Scholar]
  6. Kornberg H. L., Smith J. Genetic control of glucose uptake by Escherichia coli. FEBS Lett. 1972 Feb 15;20(3):270–272. doi: 10.1016/0014-5793(72)80084-x. [DOI] [PubMed] [Google Scholar]
  7. Lengeler J., Lin E. C. Reversal of the mannitol-sorbitol diauxie in Escherichia coli. J Bacteriol. 1972 Nov;112(2):840–848. doi: 10.1128/jb.112.2.840-848.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lengeler J. Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping. J Bacteriol. 1975 Oct;124(1):26–38. doi: 10.1128/jb.124.1.26-38.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lengeler J. Nature and properties of hexitol transport systems in Escherichia coli. J Bacteriol. 1975 Oct;124(1):39–47. doi: 10.1128/jb.124.1.39-47.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lengeler J., Steinberger H. Analysis of the regulatory mechanisms controlling the synthesis of the hexitol transport systems in Escherichia coli K12. Mol Gen Genet. 1978 Aug 17;164(2):163–169. doi: 10.1007/BF00267381. [DOI] [PubMed] [Google Scholar]
  11. MARTONOSI A. Chromatographic separation of phosphate compounds. Biochem Biophys Res Commun. 1960 Jan;2:12–14. doi: 10.1016/0006-291x(60)90254-0. [DOI] [PubMed] [Google Scholar]
  12. Ohnishi S. T. A new method of separating inorganic orthophosphate from phosphoric esters and anhydrides by an immobilized catalyst column. Anal Biochem. 1978 May;86(1):201–213. doi: 10.1016/0003-2697(78)90335-4. [DOI] [PubMed] [Google Scholar]
  13. Perret J., Gay P. Kinetic study of a phosphoryl exchange reaction between fructose and fructose 1-phosphate catalyzed by the membrane-bound enzyme II of the phosphoenolpyruvate-fructose 1-phosphotransferase system of Bacillus subtilis. Eur J Biochem. 1979 Dec;102(1):237–246. doi: 10.1111/j.1432-1033.1979.tb06285.x. [DOI] [PubMed] [Google Scholar]
  14. Rephaeli A. W., Saier M. H., Jr Substrate specificity and kinetic characterization of sugar uptake and phosphorylation, catalyzed by the mannose enzyme II of the phosphotransferase system in Salmonella typhimurium. J Biol Chem. 1980 Sep 25;255(18):8585–8591. [PubMed] [Google Scholar]
  15. Rosenberg H., Cox G. B., Butlin J. D., Gutowski S. J. Metabolite transport in mutants of Escherichia coli K12 defective in electron transport and coupled phosphorylation. Biochem J. 1975 Feb;146(2):417–423. doi: 10.1042/bj1460417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rosenberg H., Gerdes R. G., Chegwidden K. Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol. 1977 Aug;131(2):505–511. doi: 10.1128/jb.131.2.505-511.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rosenberg H., Russell L. M., Jacomb P. A., Chegwidden K. Phosphate exchange in the pit transport system in Escherichia coli. J Bacteriol. 1982 Jan;149(1):123–130. doi: 10.1128/jb.149.1.123-130.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rosenberg H. Transport of iron into bacterial cells. Methods Enzymol. 1979;56:388–394. doi: 10.1016/0076-6879(79)56036-4. [DOI] [PubMed] [Google Scholar]
  19. Saier M. H., Jr, Feucht B. U., Mora W. K. Sugar phosphate: sugar transphosphorylation and exchange group translocation catalyzed by the enzyme 11 complexes of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Biol Chem. 1977 Dec 25;252(24):8899–8907. [PubMed] [Google Scholar]
  20. Solomon E., Lin E. C. Mutations affecting the dissimilation of mannitol by Escherichia coli K-12. J Bacteriol. 1972 Aug;111(2):566–574. doi: 10.1128/jb.111.2.566-574.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Solomon E., Miyal K., Lin E. C. Membrane translocation of mannitol in Escherichia coli without phosphorylation. J Bacteriol. 1973 May;114(2):723–728. doi: 10.1128/jb.114.2.723-728.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. WOLFF J. B., KAPLAN N. O. D-Mannitol 1-phosphate dehydrogenase from Escherichia coli. J Biol Chem. 1956 Feb;218(2):849–869. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES