Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Jun;158(3):844–848. doi: 10.1128/jb.158.3.844-848.1984

Sodium-stimulated ATPase in Streptococcus faecalis.

N Kinoshita, T Unemoto, H Kobayashi
PMCID: PMC215518  PMID: 6144668

Abstract

We measured Na+-stimulated ATPase activity in a mutant of Streptococcus faecalis defective in the generation of proton motive force. The activity in membrane vesicles was 62.1 +/- 5.9 nmol of phosphate produced per min per mg of protein when cells were grown on medium containing 0.12 M Na+. Activity decreased as the concentration of Na+ in the growth medium decreased. The decrease in enzyme activity corresponded to the decrease in transport activity for Na+ in both whole cells and membrane vesicles. The effects of pH on both activities were identical. Thus, it is suggested that Na+ movement is mediated by this enzyme. Sodium extrusion and ATPase activity in the wild-type strain were markedly lower than those observed in the mutant strain. Elevated activities of both Na+ extrusion and Na+-stimulated ATPase could be detected in the wild-type strain when cells were grown in the absence of proton motive force. Thus, we propose that the level of ATPase is increased by dissipation of the proton motive force.

Full text

PDF
844

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Epstein W., Whitelaw V., Hesse J. A K+ transport ATPase in Escherichia coli. J Biol Chem. 1978 Oct 10;253(19):6666–6668. [PubMed] [Google Scholar]
  2. Fillingame R. H. The proton-translocating pumps of oxidative phosphorylation. Annu Rev Biochem. 1980;49:1079–1113. doi: 10.1146/annurev.bi.49.070180.005243. [DOI] [PubMed] [Google Scholar]
  3. Heefner D. L., Harold F. M. ATP-driven sodium pump in Streptococcus faecalis. Proc Natl Acad Sci U S A. 1982 May;79(9):2798–2802. doi: 10.1073/pnas.79.9.2798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Heefner D. L., Harold F. M. ATP-linked sodium transport in Streptococcus faecalis. I. The sodium circulation. J Biol Chem. 1980 Dec 10;255(23):11396–11402. [PubMed] [Google Scholar]
  5. Heefner D. L., Kobayashi H., Harold F. M. ATP-linked sodium transport in Streptococcus faecalis. II. Energy coupling in everted membrane vesicles. J Biol Chem. 1980 Dec 10;255(23):11403–11407. [PubMed] [Google Scholar]
  6. Hugentobler G., Heid I., Solioz M. Purification of a putative K+-ATPase from Streptococcus faecalis. J Biol Chem. 1983 Jun 25;258(12):7611–7617. [PubMed] [Google Scholar]
  7. Kobayashi H., Anraku Y. Membrane-bound adenosine triphosphatase of Escherichia coli. I. Partial purification and properties. J Biochem. 1972 Mar;71(3):387–399. [PubMed] [Google Scholar]
  8. Kobayashi H. Second system for potassium transport in Streptococcus faecalis. J Bacteriol. 1982 May;150(2):506–511. doi: 10.1128/jb.150.2.506-511.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kobayashi H., Unemoto T. Streptococcus faecalis mutants defective in regulation of cytoplasmic pH. J Bacteriol. 1980 Sep;143(3):1187–1193. doi: 10.1128/jb.143.3.1187-1193.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kobayashi H., Van Brunt J., Harold F. M. ATP-linked calcium transport in cells and membrane vesicles of Streptococcus faecalis. J Biol Chem. 1978 Apr 10;253(7):2085–2092. [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Mitchell P. Vectorial chemistry and the molecular mechanics of chemiosmotic coupling: power transmission by proticity. Biochem Soc Trans. 1976;4(3):399–430. doi: 10.1042/bst0040399. [DOI] [PubMed] [Google Scholar]
  13. Rhoads D. B., Epstein W. Energy coupling to net K+ transport in Escherichia coli K-12. J Biol Chem. 1977 Feb 25;252(4):1394–1401. [PubMed] [Google Scholar]
  14. Schuurmans Stekhoven F., Bonting S. L. Transport adenosine triphosphatases: properties and functions. Physiol Rev. 1981 Jan;61(1):1–76. doi: 10.1152/physrev.1981.61.1.1. [DOI] [PubMed] [Google Scholar]
  15. Wieczorek L., Altendorf K. Potassium transport in Escherichia coli. Evidence for a K+-transport adenosine-5'-triphosphatase. FEBS Lett. 1979 Feb 15;98(2):233–236. doi: 10.1016/0014-5793(79)80189-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES