Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Jun;158(3):1161–1162. doi: 10.1128/jb.158.3.1161-1162.1984

Incorporation of isotope from specifically labeled glucose into alginates of Pseudomonas aeruginosa and Azotobacter vinelandii.

A R Lynn, J R Sokatch
PMCID: PMC215565  PMID: 6427189

Abstract

The incorporation of isotope from [6-14C]glucose into alginate by both Pseudomonas aeruginosa and Azotobacter vinelandii was 10-fold greater than that from either [1-14C]- or [2-14C]glucose, indicating preferential utilization of the bottom half of the glucose molecule for alginate synthesis. These data strongly suggest that the Entner - Doudoroff pathway plays a major role in alginate synthesis in both P. aeruginosa and A. vinelandii.

Full text

PDF
1162

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banerjee P. C., Vanags R. I., Chakrabarty A. M., Maitra P. K. Alginic acid synthesis in Pseudomonas aeruginosa mutants defective in carbohydrate metabolism. J Bacteriol. 1983 Jul;155(1):238–245. doi: 10.1128/jb.155.1.238-245.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DUFF J. T., WYSS O. Isolation and classification of a new series of Azotobacter bacteriophages. J Gen Microbiol. 1961 Feb;24:273–289. doi: 10.1099/00221287-24-2-273. [DOI] [PubMed] [Google Scholar]
  3. De Ley J., Park I. W. Molecular biological taxonomy of some free-living nitrogen-fixing bacteria. Antonie Van Leeuwenhoek. 1966;32(1):6–16. doi: 10.1007/BF02097440. [DOI] [PubMed] [Google Scholar]
  4. Evans L. R., Linker A. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J Bacteriol. 1973 Nov;116(2):915–924. doi: 10.1128/jb.116.2.915-924.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hoiby N. Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. A survey. Acta Pathol Microbiol Scand Suppl. 1977;(262):1–96. [PubMed] [Google Scholar]
  6. JUNI E., HEYM G. A. Determination of carbonyl acids formed upon periodate oxidation. I. Assay procedure. Anal Biochem. 1962 Aug;4:143–158. doi: 10.1016/0003-2697(62)90031-3. [DOI] [PubMed] [Google Scholar]
  7. Knutson C. A., Jeanes A. Determination of the composition of uronic acid mixtures. Anal Biochem. 1968 Sep;24(3):482–490. doi: 10.1016/0003-2697(68)90155-3. [DOI] [PubMed] [Google Scholar]
  8. Larsen B., Haug A. Biosynthesis of alginate. 3. Tritium incorporation with polymannuronic acid 5-epimerase from Azotobacter vinelandii. Carbohydr Res. 1971 Dec;20(2):225–232. doi: 10.1016/s0008-6215(00)81375-0. [DOI] [PubMed] [Google Scholar]
  9. MORTENSON L. E., HAMILTON P. B., WILSON P. W. Dissimilation of 6-phosphogluconate by Azotobacter vinelandii. Biochim Biophys Acta. 1955 Feb;16(2):238–244. doi: 10.1016/0006-3002(55)90209-2. [DOI] [PubMed] [Google Scholar]
  10. Pindar D. F., Bucke C. The biosynthesis of alginic acid by Azotobacter vinelandii. Biochem J. 1975 Dec;152(3):617–622. doi: 10.1042/bj1520617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. STERN I. J., WANG C. H., GILMOUR C. M. Comparative catabolism of carbohydrates in Pseudomonas species. J Bacteriol. 1960 Apr;79:601–611. doi: 10.1128/jb.79.4.601-611.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES