Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Jul;159(1):348–352. doi: 10.1128/jb.159.1.348-352.1984

Hydrogen-oxidizing electron transport components in nitrogen-fixing Azotobacter vinelandii.

T Y Wong, R J Maier
PMCID: PMC215636  PMID: 6735984

Abstract

Membranes from N2-fixing Azotobacter vinelandii were isolated to identify electron transport components involved in H2 oxidation. We found direct evidence for the involvement of cytochromes b, c, and d in H2 oxidation by the use of H2-reduced minus O2-oxidized absorption difference spectra. Carbon monoxide spectra showed that H2 reduced cytochrome d but not cytochrome o. Inhibition of H2 oxidation by cyanide was monophasic with a high Ki (135 microM); this was attributed to cytochrome d. Cyanide inhibition of malate oxidation showed the presence of an additional, low Ki (0.1 microM cyanide) component in the membranes; this was attributed to cytochrome o. However, H2 oxidation was not sensitive to this cyanide concentration. Chlorpromazine (at 160 microM) markedly inhibited malate oxidation, but it did not greatly inhibit H2 oxidation. Irradiation of membranes with UV light inhibited H2 oxidation. Adding A. vinelandii Q8 to the UV-damaged membranes partially restored H2 oxidation activity, whereas addition of UV-treated Q8 did not increase the activity. 2-n-Heptyl-4-hydroxyquinoline-N-oxide inhibited both H2 and malate oxidation.

Full text

PDF
351

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Bernard U., Probst I., Schlegel H. G. The cytochromes of some hydrogen bacteria. Arch Mikrobiol. 1974 Mar 1;95(1):29–37. doi: 10.1007/BF02451745. [DOI] [PubMed] [Google Scholar]
  3. Bowien B., Schlegel H. G. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annu Rev Microbiol. 1981;35:405–452. doi: 10.1146/annurev.mi.35.100181.002201. [DOI] [PubMed] [Google Scholar]
  4. Erickson S. K., Parker G. L. The electron-transport system of Micrococcus lutea (Sarcina lutea). Biochim Biophys Acta. 1969 May;180(1):56–62. doi: 10.1016/0005-2728(69)90193-5. [DOI] [PubMed] [Google Scholar]
  5. GREEN M., WILSON P. W. Hydrogenase and nitrogenase in Azotobacter. J Bacteriol. 1953 May;65(5):511–517. doi: 10.1128/jb.65.5.511-517.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HYNDMAN L. A., BURRIS R. H., WILSON P. W. Properties of hydrogenase from Azotobacter vinelandii. J Bacteriol. 1953 May;65(5):522–531. doi: 10.1128/jb.65.5.522-531.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haddock B. A., Jones C. W. Bacterial respiration. Bacteriol Rev. 1977 Mar;41(1):47–99. doi: 10.1128/br.41.1.47-99.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jones C. W., Redfearn E. R. Electron transport in Azotobacter vinelandii. Biochim Biophys Acta. 1966 Mar 7;113(3):467–481. doi: 10.1016/s0926-6593(66)80005-x. [DOI] [PubMed] [Google Scholar]
  9. Jones C. W., Redfearn E. R. Preparation of red and green electron transport particles from Azotobacter vinelandii. Biochim Biophys Acta. 1967 Sep 6;143(2):354–362. doi: 10.1016/0005-2728(67)90089-8. [DOI] [PubMed] [Google Scholar]
  10. Jones C. W., Redfearn E. R. The cytochrome system of Azotobacter vinelandii. Biochim Biophys Acta. 1967 Sep 6;143(2):340–353. doi: 10.1016/0005-2728(67)90088-6. [DOI] [PubMed] [Google Scholar]
  11. Jones C. W. The inhibition of Azotobacter vinelandii terminal oxidases by cyanide. FEBS Lett. 1973 Nov 1;36(3):347–350. doi: 10.1016/0014-5793(73)80407-7. [DOI] [PubMed] [Google Scholar]
  12. Jurtshuk P., Harper L. Oxidation of D(minus) lactate by the electron transport fraction of Azotobacter vinelandii. J Bacteriol. 1968 Sep;96(3):678–686. doi: 10.1128/jb.96.3.678-686.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jurtshuk P., May A. K., Pope L. M., Aston P. R. Comparative studies on succinate and terminal oxidase activity in microbial and mammalian electron-transport systems. Can J Microbiol. 1969 Jul;15(7):797–807. doi: 10.1139/m69-139. [DOI] [PubMed] [Google Scholar]
  14. O'Brian M. R., Maier R. J. Electron transport components involved in hydrogen oxidation in free-living Rhizobium japonicum. J Bacteriol. 1982 Oct;152(1):422–430. doi: 10.1128/jb.152.1.422-430.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. O'Brian M. R., Maier R. J. Involvement of cytochromes and a flavoprotein in hydrogen oxidation in Rhizobium japonicum bacteroids. J Bacteriol. 1983 Aug;155(2):481–487. doi: 10.1128/jb.155.2.481-487.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Robson R. L., Postgate J. R. Oxygen and hydrogen in biological nitrogen fixation. Annu Rev Microbiol. 1980;34:183–207. doi: 10.1146/annurev.mi.34.100180.001151. [DOI] [PubMed] [Google Scholar]
  17. Smith L. Bacterial cytochromes and their spectral characterization. Methods Enzymol. 1978;53:202–212. doi: 10.1016/s0076-6879(78)53025-5. [DOI] [PubMed] [Google Scholar]
  18. Walker C. C., Yates M. G. The hydrogen cycle in nitrogen-fixing Azotobacter chroococcum. Biochimie. 1978;60(3):225–231. doi: 10.1016/s0300-9084(78)80818-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES