Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1984 Aug;159(2):499–504. doi: 10.1128/jb.159.2.499-504.1984

Restriction of bacteriophage plaque formation in Streptomyces spp.

K L Cox, R H Baltz
PMCID: PMC215672  PMID: 6086574

Abstract

Several Streptomyces species that produce restriction endonucleases were characterized for their ability to propagate 10 different broad host range bacteriophages. Each species displayed a different pattern of plaque formation. A restrictionless mutant of S. albus G allowed plaque formation by all 10 phages, whereas the wild-type strain showed plaques with only 2 phages. DNA isolated from three of the phages was analyzed for the presence of restriction sites for Streptomyces species-encoded enzymes, and a very strong correlation was established between the failure to form plaques on Streptomyces species that produced particular restriction enzymes and the presence of the corresponding restriction sites in the phage DNA. Also, the phages that lacked restriction sites in their DNA generally formed plaques on the corresponding restriction endonuclease-producing hosts at high efficiency. The DNAs from the three phages analyzed also generally contained either many or no restriction sites for the Streptomyces species-produced enzymes, suggesting a strong evolutionary trend to either eliminate all or tolerate many restriction sites. The data indicate that restriction plays a major role in host range determination for Streptomyces phages. Analysis of bacteriophage host ranges of many other uncharacterized Streptomyces hosts has identified four relatively nonrestricting hosts, at least two of which may be suitable hosts for gene cloning. The data also suggest that several restriction systems remain to be identified in the genus Streptomyces.

Full text

PDF
499

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrand J. R., Myers P. A., Roberts R. J. A new restriction endonuclease from Streptomyces albus G. J Mol Biol. 1978 Jan 5;118(1):127–135. doi: 10.1016/0022-2836(78)90249-8. [DOI] [PubMed] [Google Scholar]
  2. Baltz R. H. Genetic recombination in Streptomyces fradiae by protoplast fusion and cell regeneration. J Gen Microbiol. 1978 Jul;107(1):93–102. doi: 10.1099/00221287-107-1-93. [DOI] [PubMed] [Google Scholar]
  3. Baltz R. H. Genetics and biochemistry on tylosin production: a model for genetic engineering in antibiotic-producing Streptomyces. Basic Life Sci. 1982;19:431–444. doi: 10.1007/978-1-4684-4142-0_32. [DOI] [PubMed] [Google Scholar]
  4. Baltz R. H., Matsushima P. Advances in protoplast fusion and transformation in Streptomyces. Experientia Suppl. 1983;46:143–148. doi: 10.1007/978-3-0348-6776-4_18. [DOI] [PubMed] [Google Scholar]
  5. Baltz R. H., Matsushima P. Protoplast fusion in Streptomyces: conditions for efficient genetic recombination and cell regeneration. J Gen Microbiol. 1981 Nov;127(1):137–146. doi: 10.1099/00221287-127-1-137. [DOI] [PubMed] [Google Scholar]
  6. Bibb M. J., Cohen S. N. Gene expression in Streptomyces: construction and application of promoter-probe plasmid vectors in Streptomyces lividans. Mol Gen Genet. 1982;187(2):265–277. doi: 10.1007/BF00331128. [DOI] [PubMed] [Google Scholar]
  7. Bibb M. J., Ward J. M., Hopwood D. A. Transformation of plasmid DNA into Streptomyces at high frequency. Nature. 1978 Jul 27;274(5669):398–400. doi: 10.1038/274398a0. [DOI] [PubMed] [Google Scholar]
  8. Bibb M., Schottel J. L., Cohen S. N. A DNA cloning system for interspecies gene transfer in antibiotic-producing Streptomyces. Nature. 1980 Apr 10;284(5756):526–531. doi: 10.1038/284526a0. [DOI] [PubMed] [Google Scholar]
  9. Brooks J. E., Roberts R. J. Modification profiles of bacterial genomes. Nucleic Acids Res. 1982 Feb 11;10(3):913–934. doi: 10.1093/nar/10.3.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chater K. F., Bruton C. J., King A. A., Suarez J. E. The expression of Streptomyces and Escherichia coli drug-resistance determinants cloned into the Streptomyces phage phi C31. Gene. 1982 Jul-Aug;19(1):21–32. doi: 10.1016/0378-1119(82)90185-8. [DOI] [PubMed] [Google Scholar]
  11. Chater K. F., Hopwood D. A., Kieser T., Thompson C. J. Gene cloning in Streptomyces. Curr Top Microbiol Immunol. 1982;96:69–95. doi: 10.1007/978-3-642-68315-2_5. [DOI] [PubMed] [Google Scholar]
  12. Chater K. F., Wilde L. C. Restriction of a bacteriophage of Streptomyces albus G involving endonuclease SalI. J Bacteriol. 1976 Nov;128(2):644–650. doi: 10.1128/jb.128.2.644-650.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chater K. F., Wilde L. C. Streptomyces albus G mutants defective in the SalGI restriction-modification system. J Gen Microbiol. 1980 Feb;116(2):323–334. doi: 10.1099/00221287-116-2-323. [DOI] [PubMed] [Google Scholar]
  14. Day L. E., Chamberlin J. W., Gordee E. Z., Chen S., Gorman M., Hamill R. L., Ness T., Weeks R. E., Stroshane R. Biosynthesis of monensin. Antimicrob Agents Chemother. 1973 Oct;4(4):410–414. doi: 10.1128/aac.4.4.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dowding J. E. Characterization of a bacteriophage virulent for Streptomyces coelicolor A3(2). J Gen Microbiol. 1973 May;76(1):163–176. doi: 10.1099/00221287-76-1-163. [DOI] [PubMed] [Google Scholar]
  16. Fuchs L. Y., Covarrubias L., Escalante L., Sanchez S., Bolivar F. Characterization of a site-specific restriction endonuclease SphI from Streptomyces phaeochromogenes. Gene. 1980 Jun;10(1):39–46. doi: 10.1016/0378-1119(80)90141-9. [DOI] [PubMed] [Google Scholar]
  17. Hershberger C. L., Larson J. L., Fishman S. E. Uses of recombinant DNA for analyses of Streptomyces species. Ann N Y Acad Sci. 1983;413:31–46. doi: 10.1111/j.1749-6632.1983.tb47876.x. [DOI] [PubMed] [Google Scholar]
  18. Hopwood D. A. Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol Rev. 1967 Dec;31(4):373–403. doi: 10.1128/br.31.4.373-403.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hopwood D. A., Wright H. M., Bibb M. J., Cohen S. N. Genetic recombination through protoplast fusion in Streptomyces. Nature. 1977 Jul 14;268(5616):171–174. doi: 10.1038/268171a0. [DOI] [PubMed] [Google Scholar]
  20. Hopwood D. A., Wright H. M. Factors affecting recombinant frequency in protoplast fusions of Streptomyces coelicolor. J Gen Microbiol. 1979 Mar;111(1):137–143. doi: 10.1099/00221287-111-1-137. [DOI] [PubMed] [Google Scholar]
  21. Kieser T., Hopwood D. A., Wright H. M., Thompson C. J. pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen Genet. 1982;185(2):223–228. doi: 10.1007/BF00330791. [DOI] [PubMed] [Google Scholar]
  22. Lomovskaya N. D., Chater K. F., Mkrtumian N. M. Genetics and molecular biology of Streptomyces bacteriophages. Microbiol Rev. 1980 Jun;44(2):206–229. doi: 10.1128/mr.44.2.206-229.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nagarajan R., Boeck L. D., Gorman M., Hamill R. L., Higgens C. E., Hoehn M. M., Stark W. M., Whitney J. G. Beta-lactam antibiotics from Streptomyces. J Am Chem Soc. 1971 May 5;93(9):2308–2310. doi: 10.1021/ja00738a035. [DOI] [PubMed] [Google Scholar]
  24. Okamoto R., Fukumoto T., Nomura H., Kiyoshima K., Nakamura K., Takamatsu A., Naganawa H., Takeuchi T., Umezawa H. Physico-chemical properties of new acyl derivatives of tylosin produced by microbial transformation. J Antibiot (Tokyo) 1980 Nov;33(11):1300–1308. doi: 10.7164/antibiotics.33.1300. [DOI] [PubMed] [Google Scholar]
  25. Omura S., Nakagawa A. Chemical and biological studies on 16-membered macrolide antibiotics. J Antibiot (Tokyo) 1975 Jun;28(6):401–433. doi: 10.7164/antibiotics.28.401. [DOI] [PubMed] [Google Scholar]
  26. Peacock A. C., Dingman C. W. Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry. 1968 Feb;7(2):668–674. doi: 10.1021/bi00842a023. [DOI] [PubMed] [Google Scholar]
  27. Richardson M. A., Mabe J. A., Beerman N. E., Nakatsukasa W. M., Fayerman J. T. Development of cloning vehicles from the Streptomyces plasmid pFJ103. Gene. 1982 Dec;20(3):451–457. doi: 10.1016/0378-1119(82)90214-1. [DOI] [PubMed] [Google Scholar]
  28. Schottel J. L., Bibb M. J., Cohen S. N. Cloning and expression in streptomyces lividans of antibiotic resistance genes derived from Escherichia coli. J Bacteriol. 1981 Apr;146(1):360–368. doi: 10.1128/jb.146.1.360-368.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Seno E. T., Baltz R. H. Properties of S-adenosyl-L-methionine:macrocin O-methyltransferase in extracts of Streptomyces fradiae strains which produce normal or elevated levels of tylosin and in mutants blocked in specific O-methylations. Antimicrob Agents Chemother. 1981 Sep;20(3):370–377. doi: 10.1128/aac.20.3.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shimotsu H., Takahashi H., Saito H. A new site-specific endonuclease StuI from Streptomyces tubercidicus. Gene. 1980 Nov;11(3-4):219–225. doi: 10.1016/0378-1119(80)90062-1. [DOI] [PubMed] [Google Scholar]
  31. Singaram S., Lawrence R. S., Hornemann U. Studies on the biosynthesis of the antibiotic streptozotocin (streptozocin) by Streptomyces achromogenes var. streptozoticus. Feeding experiments with carbon-14 and tritium labelled precursors. J Antibiot (Tokyo) 1979 Apr;32(4):379–385. doi: 10.7164/antibiotics.32.379. [DOI] [PubMed] [Google Scholar]
  32. Stuttard C., Dwyer M. A new temperate phage of streptomyces venezuelae: morphology, DNA molecular weight and host range of SV2. Can J Microbiol. 1981 May;27(5):496–499. doi: 10.1139/m81-073. [DOI] [PubMed] [Google Scholar]
  33. Stuttard C. Transduction of auxotrophic markers in a chloramphenicol-producing strain of Streptomyces. J Gen Microbiol. 1979 Feb;110(2):479–482. doi: 10.1099/00221287-110-2-479. [DOI] [PubMed] [Google Scholar]
  34. Suarez J. E., Chater K. F. DNA cloning in Streptomyces: a bifunctional replicon comprising pBR322 inserted into a Streptomyces phage. Nature. 1980 Jul 31;286(5772):527–529. doi: 10.1038/286527a0. [DOI] [PubMed] [Google Scholar]
  35. Thompson C. J., Ward J. M., Hopwood D. A. Cloning of antibiotic resistance and nutritional genes in streptomycetes. J Bacteriol. 1982 Aug;151(2):668–677. doi: 10.1128/jb.151.2.668-677.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Thompson C. J., Ward J. M., Hopwood D. A. DNA cloning in Streptomyces: resistance genes from antibiotic-producing species. Nature. 1980 Jul 31;286(5772):525–527. doi: 10.1038/286525a0. [DOI] [PubMed] [Google Scholar]
  37. Yi-guang W., Davies J. E., Hutchinson C. R. Plasmid DNA in the erythromycin producing microorganism, Streptomyces erythreus NRRL 2338. J Antibiot (Tokyo) 1982 Mar;35(3):335–342. doi: 10.7164/antibiotics.35.335. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES