Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Oct;148(1):183–192. doi: 10.1128/jb.148.1.183-192.1981

Folic acid and pterin deaminases in Dictyostelium discoideum: kinetic properties and regulation by folic acid, pterin, and adenosine 3',5'-phosphate.

B Wurster, F Bek, U Butz
PMCID: PMC216180  PMID: 6270062

Abstract

Kinetic data obtained for deamination of pterin by the extracellular fraction from Dictyostelium discoideum yielded apparently linear Lineweaver-Burk plots for pterin. The Michaelis constant for pterin was 30 microM. The data for folic acid deamination yielded convex Lineweaver-Burk plots. Convex Lineweaver-Burk plots could result from the presence of two types of enzymes with different affinities. The data for folic acid deamination were analyzed mathematically for two types of enzymes. This analysis produced Michaelis constants for folic acid of 1.8 and 23 microM competition studies suggested that an enzyme with low affinity nonspecifically catalyzed the deamination of folic acid and pterin, whereas an enzyme with high affinity was a specific folic acid deaminase. A specific folic acid deaminase with high affinity appeared to be present on the surface of D. discoideum cells. The Michaelis constant for this enzyme was 2.6 microM. Cells growing in nutrient broth and cells starved in phosphate buffer released folic acid and pterin deaminases. The quantity of deaminase activities released by the cells appeared to be controlled by chemoattractants. Starving cells that were supplied with folic acid, pterin, or adenosine 3',5'-phosphate increased their extracellular folic acid and pterin deaminase activities to a larger extent than did cell suspensions to which no chemoattractants were added. Administration of folic acid or pterin to starving cells caused increases of the activity of extracellular adenosine 3',5'-phosphate phosphodiesterase and repressed increases of the activity of phosphodiesterase inhibitor.

Full text

PDF
184

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barkley D. S. Adenosine-3',5'-phosphate: identification as acrasin in a species of cellular slime mold. Science. 1969 Sep 12;165(3898):1133–1134. doi: 10.1126/science.165.3898.1133. [DOI] [PubMed] [Google Scholar]
  2. Bernstein R. L., Van Driel R. Control of folate deamine activity of Dictyostelium discoideum by cyclic AMP. FEBS Lett. 1980 Oct 6;119(2):249–253. doi: 10.1016/0014-5793(80)80264-x. [DOI] [PubMed] [Google Scholar]
  3. Beug H., Katz F. E., Gerisch G. Dynamics of antigenic membrane sites relating to cell aggregation in Dictyostelium discoideum. J Cell Biol. 1973 Mar;56(3):647–658. doi: 10.1083/jcb.56.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bonner J. T., Barkley D. S., Hall E. M., Konijn T. M., Mason J. W., O'Keefe G., 3rd, Wolfe P. B. Acrasin, Acrasinase, and the sensitivity to acrasin in Dictyostelium discoideum. Dev Biol. 1969 Jul;20(1):72–87. doi: 10.1016/0012-1606(69)90005-0. [DOI] [PubMed] [Google Scholar]
  5. Condeelis J. Isolation of concanavalin A caps during various stages of formation and their association with actin and myosin. J Cell Biol. 1979 Mar;80(3):751–758. doi: 10.1083/jcb.80.3.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Darmon M., Barrand P., Brachet P., Klein C., Pereira Da Silva L. Phenotypic suppression of morphogenetic mutants of Dictyostelium discoideum. Dev Biol. 1977 Jul 1;58(1):174–184. doi: 10.1016/0012-1606(77)90083-5. [DOI] [PubMed] [Google Scholar]
  7. Darmon M., Brachet P., Da Silva L. H. Chemotactic signals induce cell differentiation in Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3163–3166. doi: 10.1073/pnas.72.8.3163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gerisch G., Fromm H., Huesgen A., Wick U. Control of cell-contact sites by cyclic AMP pulses in differentiating Dictyostelium cells. Nature. 1975 Jun 12;255(5509):547–549. doi: 10.1038/255547a0. [DOI] [PubMed] [Google Scholar]
  9. Green A. A., Newell P. C. Evidence for the existence of two types of cAMP binding sites in aggregating cells of Dictyostelium discoideum. Cell. 1975 Oct;6(2):129–136. doi: 10.1016/0092-8674(75)90003-3. [DOI] [PubMed] [Google Scholar]
  10. Henderson E. J. The cyclic adenosine 3':5'-monophosphate receptor of Dictyostelium discoideum. Binding characteristics of aggregation-competent cells and variation of binding levels during the life cycle. J Biol Chem. 1975 Jun 25;250(12):4730–4736. [PubMed] [Google Scholar]
  11. Juliani M. H., Klein C. A biochemical study of the effects of cAMP pulses on aggregateless mutants of Dictyostelium discoideum. Dev Biol. 1978 Jan;62(1):162–172. doi: 10.1016/0012-1606(78)90098-2. [DOI] [PubMed] [Google Scholar]
  12. Kakebeeke P. I., de Wit R. J., Konijn T. M. Folic acid deaminase activity during development in Dictyostelium discoideum. J Bacteriol. 1980 Jul;143(1):307–312. doi: 10.1128/jb.143.1.307-312.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klein C., Darmon M. Effects of cyclic AMP pulses on adenylate cyclase and the phosphodiesterase inhibitor of D. discoideum. Nature. 1977 Jul 7;268(5615):76–78. doi: 10.1038/268076a0. [DOI] [PubMed] [Google Scholar]
  14. Klein C. Induction of phosphodiesterase by cyclic adenosine 3':5'-monophosphate in differentiating Dictyostelium discoideum amoebae. J Biol Chem. 1975 Sep 25;250(18):7134–7138. [PubMed] [Google Scholar]
  15. Konijn T. M., Van De Meene J. G., Bonner J. T., Barkley D. S. The acrasin activity of adenosine-3',5'-cyclic phosphate. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1152–1154. doi: 10.1073/pnas.58.3.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LEVENBERG B., HAYAISHI O. A bacterial pterin deaminase. J Biol Chem. 1959 Apr;234(4):955–961. [PubMed] [Google Scholar]
  17. Malchow D., Gerisch G. Short-term binding and hydrolysis of cyclic 3':5'-adenosine monophosphate by aggregating Dictyostelium cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2423–2427. doi: 10.1073/pnas.71.6.2423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Malkinson A. M., Ashworth J. M. Adenosine 3':5'-cyclic monophosphate concentrations and phosphodiesterase activities during axenic growth and differentiation of cells of the cellular slime mould Dictyostelium discoideum. Biochem J. 1973 May;134(1):311–319. doi: 10.1042/bj1340311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pan P., Hall E. M., Bonner J. T. Determination of the active portion of the folic acid molecule in cellular slime mold chemotaxis. J Bacteriol. 1975 Apr;122(1):185–191. doi: 10.1128/jb.122.1.185-191.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pan P., Hall E. M., Bonner J. T. Folic acid as second chemotactic substance in the cellular slime moulds. Nat New Biol. 1972 Jun 7;237(75):181–182. doi: 10.1038/newbio237181a0. [DOI] [PubMed] [Google Scholar]
  21. Pan P., Wurster B. Inactivation of the chemoattractant folic acid by cellular slime molds and identification of the reaction product. J Bacteriol. 1978 Dec;136(3):955–959. doi: 10.1128/jb.136.3.955-959.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rappold H., Bacher A. Bacterial degradation of folic acid. J Gen Microbiol. 1974 Dec;85(2):283–290. doi: 10.1099/00221287-85-2-283. [DOI] [PubMed] [Google Scholar]
  23. Rembold H., Simmersbach F. Catabolism of pteridine cofactors. II. A specific pterin deaminase in rat liver. Biochim Biophys Acta. 1969 Sep 2;184(3):589–596. doi: 10.1016/0304-4165(69)90273-6. [DOI] [PubMed] [Google Scholar]
  24. Riedel V., Malchow D., Gerisch G., Nägele B. Cyclic AMP phosphodiesterase interaction with its inhibitor of the slime mold, Dictyostelium discoideum. Biochem Biophys Res Commun. 1972 Jan 14;46(1):279–287. doi: 10.1016/0006-291x(72)90660-2. [DOI] [PubMed] [Google Scholar]
  25. Soini J., Backman A. Studies on the degradation of pterine and pterine-6-carboxylic acid by Pseudomonas fluorescens UK-1. Acta Chem Scand B. 1975;29(6):710–714. doi: 10.3891/acta.chem.scand.29b-0710. [DOI] [PubMed] [Google Scholar]
  26. Watts D. J., Ashworth J. M. Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem J. 1970 Sep;119(2):171–174. doi: 10.1042/bj1190171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wurster B., Butz U. Reversible binding of the chemoattractant folic acid to cells of Dictyostelium discoideum. Eur J Biochem. 1980 Aug;109(2):613–618. doi: 10.1111/j.1432-1033.1980.tb04834.x. [DOI] [PubMed] [Google Scholar]
  28. Wurster B., Schubiger K., Brachet P. Cyclic GMP and cyclic AMP changes in response to folic acid pulses during cell development of Dictyostelium discoideum. Cell Differ. 1979 Jun;8(3):235–242. doi: 10.1016/0045-6039(79)90050-2. [DOI] [PubMed] [Google Scholar]
  29. Wurster B., Schubiger K. Oscillations and cell development in Dictyostelium discoideum stimulated by folic acid pulses. J Cell Sci. 1977;27:105–114. doi: 10.1242/jcs.27.1.105. [DOI] [PubMed] [Google Scholar]
  30. Yeh R. P., Chan F. K., Coukell M. B. Independent regulation of the extracellular cyclic AMP phosphodiesterase-inhibitor system and membrane differentiation by exogenous cyclic AMP in Dictyostelium discoideum. Dev Biol. 1978 Oct;66(2):361–374. doi: 10.1016/0012-1606(78)90245-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES