Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Nov;148(2):514–520. doi: 10.1128/jb.148.2.514-520.1981

Methionine sulfoxide is transported by high-affinity methionine and glutamine transport systems in Salmonella typhimurium.

P D Ayling
PMCID: PMC216234  PMID: 7028716

Abstract

Three lines of evidence indicated that methionine sulfoxide is transported by the high-affinity methionine and glutamine transport systems in Salmonella typhimurium. First, methionine-requiring strains (metE) which have mutations affecting both of these transport systems (metP glnP) were unable to use methionine sulfoxide as a source of methionine. These strains could still grow on L-methionine because they possessed a low-affinity system (or systems) which transported L-methionine but not the sulfoxide. A methionine auxotroph with a defect only in the metP system, which was dependent upon the glnP+ system for the transport of methionine sulfoxide, was inhibited by L-glutamine because glutamine inhibited the transport of the sulfoxide by the glnP+ system. Second, a metE metP glnP strain could be transduced at either the metP or glnP genes to restore its ability to grow on methionine sulfoxide. Third, the transport of [14C]methionine sulfoxide was inhibited by methionine and by glutamine in the metP+ glnP+ strain. No transport was detected in the metP glnP double-mutant strain.

Full text

PDF
518

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayling P. D., Bridgeland E. S. Methionine transport in wild-type and transport-defective mutants of Salmonella typhimurium. J Gen Microbiol. 1972 Nov;73(1):127–141. doi: 10.1099/00221287-73-1-127. [DOI] [PubMed] [Google Scholar]
  2. Ayling P. D., Mojica-a T., Klopotowski T. Methionine transport in Salmonella typhimurium: evidence for at least one low-affinity transport system. J Gen Microbiol. 1979 Oct;114(2):227–246. doi: 10.1099/00221287-114-2-227. [DOI] [PubMed] [Google Scholar]
  3. Betteridge P. R., Ayling P. D. The role of methionine transport-defective mutations in resistance to methionine sulphoximine in Salmonella typhimurium. Mol Gen Genet. 1975;138(1):41–52. doi: 10.1007/BF00268826. [DOI] [PubMed] [Google Scholar]
  4. Brot N., Weissbach L., Werth J., Weissbach H. Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2155–2158. doi: 10.1073/pnas.78.4.2155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caldwell P., Luk D. C., Weissbach H., Brot N. Oxidation of the methionine residues of Escherichia coli ribosomal protein L12 decreases the protein's biological activity. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5349–5352. doi: 10.1073/pnas.75.11.5349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dykhuizen D. Genetic analysis of the system that reduces biotin-d-sulfoxide in Escherichia coli. J Bacteriol. 1973 Aug;115(2):662–667. doi: 10.1128/jb.115.2.662-667.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ejiri S. I., Weissbach H., Brot N. Reduction of methionine sulfoxide to methionine by Escherichia coli. J Bacteriol. 1979 Jul;139(1):161–164. doi: 10.1128/jb.139.1.161-164.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ejiri S. I., Weissbach H., Brot N. The purification of methionine sulfoxide reductase from Escherichia coli. Anal Biochem. 1980 Mar 1;102(2):393–398. doi: 10.1016/0003-2697(80)90173-6. [DOI] [PubMed] [Google Scholar]
  9. Gonzalez Porqué P., Baldesten A., Reichard P. The involvement of the thioredoxin system in the reduction of methionine sulfoxide and sulfate. J Biol Chem. 1970 May 10;245(9):2371–2374. [PubMed] [Google Scholar]
  10. Hartman P. E. Some improved methods in P22 transduction. Genetics. 1974 Apr;76(4):625–631. doi: 10.1093/genetics/76.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kadner R. J. Regulation of methionine transport activity in Escherichia coli. J Bacteriol. 1975 Apr;122(1):110–119. doi: 10.1128/jb.122.1.110-119.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kadner R. J. Transport and utilization of D-methionine and other methionine sources in Escherichia coli. J Bacteriol. 1977 Jan;129(1):207–216. doi: 10.1128/jb.129.1.207-216.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mäntsälä P., Laakso S., Nurmikko V. Observations on methionine transport in Pseudomonas fluorescens UK1. J Gen Microbiol. 1974 Sep;84(1):19–27. doi: 10.1099/00221287-84-1-19. [DOI] [PubMed] [Google Scholar]
  14. Sanderson K. E., Hartman P. E. Linkage map of Salmonella typhimurium, edition V. Microbiol Rev. 1978 Jun;42(2):471–519. doi: 10.1128/mr.42.2.471-519.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smith D. A. S-amino acid metabolism and its regulation in Escherichia coli and Salmonella typhimurium. Adv Genet. 1971;16:141–165. doi: 10.1016/s0065-2660(08)60357-0. [DOI] [PubMed] [Google Scholar]
  16. Truscott R. J., Augusteyn R. C. Oxidative changes in human lens proteins during senile nuclear cataract formation. Biochim Biophys Acta. 1977 May 27;492(1):43–52. doi: 10.1016/0005-2795(77)90212-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES