Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Nov;148(2):521–526. doi: 10.1128/jb.148.2.521-526.1981

Regulation of fatty acid degradation in Escherichia coli: analysis by operon fusion.

D Clark
PMCID: PMC216235  PMID: 6271734

Abstract

Fusion of the lacZ gene coding for beta-galactosidase to the fadA,B and fadE operons was accomplished by using the phage Mu d (Apr lac). In such fusion strains, beta-galactosidase was induced by long-chain fatty acids and repressed by glucose, as is the normal pattern of control for the enzymes of the fad regulon. The level of induction seen was approximately 10-fold for both the fadA and fadE operons. These results demonstrate that the previously observed regulation of both the fadA and fadE operons is at the transcriptional level. When an insertion mutation in the fadR (repressor) gene was introduced into the fusion strains, beta-galactosidase was produced constitutively. A series of fatty acids of different chain lengths were tested as inducers. Acids of chain lengths of 10 carbon atoms or less failed to induce, those of 12 carbon atoms induced partly, and those of 14 or more carbon atoms induced fully. Imidazole was found to counteract the glucose repression of the fadA operon as recently demonstrated for the ara operon.

Full text

PDF
526

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann B. J., Low K. B. Linkage map of Escherichia coli K-12, edition 6. Microbiol Rev. 1980 Mar;44(1):1–56. doi: 10.1128/mr.44.1.1-56.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Binstock J. F., Pramanik A., Schulz H. Isolation of a multi-enzyme complex of fatty acid oxidation from Escherichia coli. Proc Natl Acad Sci U S A. 1977 Feb;74(2):492–495. doi: 10.1073/pnas.74.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Casadaban M. J., Cohen S. N. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4530–4533. doi: 10.1073/pnas.76.9.4530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clark D. P., Cronan J. E., Jr Acetaldehyde coenzyme A dehydrogenase of Escherichia coli. J Bacteriol. 1980 Oct;144(1):179–184. doi: 10.1128/jb.144.1.179-184.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark D., Cronan J. E., Jr Escherichia coli mutants with altered control of alcohol dehydrogenase and nitrate reductase. J Bacteriol. 1980 Jan;141(1):177–183. doi: 10.1128/jb.141.1.177-183.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coppola S., Zoina A., Marino P. Interactions of N6-(delta2-isopentenyl)adenine with cyclic AMP on the regulation of growth and beta-galactosidase synthesis in Escherichia coli. J Gen Microbiol. 1976 Jun;94(2):436–438. doi: 10.1099/00221287-94-2-436. [DOI] [PubMed] [Google Scholar]
  7. Herrlich P., Schweiger M. Nitrofurans, a group of synthetic antibiotics, with a new mode of action: discrimination of specific messenger RNA classes. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3386–3390. doi: 10.1073/pnas.73.10.3386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hill F. F., Angelmaier D. Specific enrichment of mutants of Escherichia coli with an altered acyl CoA synthetase by tritium suicide. Mol Gen Genet. 1972;117(2):143–152. doi: 10.1007/BF00267611. [DOI] [PubMed] [Google Scholar]
  9. Klein K., Steinberg R., Fiethen B., Overath P. Fatty acid degradation in Escherichia coli. An inducible system for the uptake of fatty acids and further characterization of old mutants. Eur J Biochem. 1971 Apr;19(3):442–450. doi: 10.1111/j.1432-1033.1971.tb01334.x. [DOI] [PubMed] [Google Scholar]
  10. Kline E. L., Bankaitis V. A., Brown C. S., Montefiori D. C. Metabolite gene regulation: imidazole and imidazole derivatives which circumvent cyclic adenosine 3',5'-monophosphate in induction of the Escherichia coli L-arabinose operon. J Bacteriol. 1980 Feb;141(2):770–778. doi: 10.1128/jb.141.2.770-778.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kline E. L., Brown C. S., Bankaitis V., Montefiori D. C., Craig K. Metabolite gene regulation of the L-arabinose operon in Escherichia coli with indoleacetic acid and other indole derivatives. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1768–1772. doi: 10.1073/pnas.77.4.1768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kornberg H. L. The role and control of the glyoxylate cycle in Escherichia coli. Biochem J. 1966 Apr;99(1):1–11. doi: 10.1042/bj0990001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nunn W. D., Simons R. W. Transport of long-chain fatty acids by Escherichia coli: mapping and characterization of mutants in the fadL gene. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3377–3381. doi: 10.1073/pnas.75.7.3377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. O'Brien W. J., Frerman F. E. A mutant of Escherichia coli with altered inducer specificity for the fad regulon. Biochem Biophys Res Commun. 1973 Sep 18;54(2):697–703. doi: 10.1016/0006-291x(73)91479-4. [DOI] [PubMed] [Google Scholar]
  15. O'Brien W. J., Frerman F. E. Evidence for a complex of three beta-oxidation enzymes in Escherichia coli: induction and localization. J Bacteriol. 1977 Nov;132(2):532–540. doi: 10.1128/jb.132.2.532-540.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Overath P., Pauli G., Schairer H. U. Fatty acid degradation in Escherichia coli. An inducible acyl-CoA synthetase, the mapping of old-mutations, and the isolation of regulatory mutants. Eur J Biochem. 1969 Feb;7(4):559–574. [PubMed] [Google Scholar]
  17. Overath P., Raufuss E. M. The induction of the enzymes of fatty acid degradation in Escherichia coli. Biochem Biophys Res Commun. 1967 Oct 11;29(1):28–33. doi: 10.1016/0006-291x(67)90535-9. [DOI] [PubMed] [Google Scholar]
  18. Saier M. H., Jr Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: structural, functional, and evolutionary interrelationships. Bacteriol Rev. 1977 Dec;41(4):856–871. doi: 10.1128/br.41.4.856-871.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Saier M. H., Jr, Roseman S. Sugar transport. 2nducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate:sugar phosphotransferase system. J Biol Chem. 1976 Nov 10;251(21):6606–6615. [PubMed] [Google Scholar]
  20. Simons R. W., Egan P. A., Chute H. T., Nunn W. D. Regulation of fatty acid degradation in Escherichia coli: isolation and characterization of strains bearing insertion and temperature-sensitive mutations in gene fadR. J Bacteriol. 1980 May;142(2):621–632. doi: 10.1128/jb.142.2.621-632.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Simons R. W., Hughes K. T., Nunn W. D. Regulation of fatty acid degradation in Escherichia coli: dominance studies with strains merodiploid in gene fadR. J Bacteriol. 1980 Aug;143(2):726–730. doi: 10.1128/jb.143.2.726-730.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weeks G., Shapiro M., Burns R. O., Wakil S. J. Control of fatty acid metabolism. I. Induction of the enzymes of fatty acid oxidation in Escherichia coli. J Bacteriol. 1969 Feb;97(2):827–836. doi: 10.1128/jb.97.2.827-836.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES