Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Nov;148(2):584–593. doi: 10.1128/jb.148.2.584-593.1981

Biosynthetic and Bioenergetic Functions of Citric Acid Cycle Reactions in Rhodopseudomonas capsulata

J Thomas Beatty 1,, Howard Gest 1
PMCID: PMC216243  PMID: 7298578

Abstract

Rhodopseudomonas capsulata can grow in a number of alternative modes, including (i) photosynthetic, defined here as anaerobic growth with light as the energy source, and (ii) heterotrophic, referring to aerobic heterotrophic growth in darkness. The functions of citric acid cycle sequences in these growth modes were investigated using wild-type and appropriate mutant strains. Results of growth tests and O2 utilization experiments showed that in the heterotrophic mode, energy conversion is dependent on operation of the classical citric acid cycle. Alpha-ketoglutarate dehydrogenase (KGD) activity in wild-type strain B10 is substantially higher in cells grown heterotrophically than in cells grown photosynthetically. Molecular oxygen, even at low concentration, appears to be important in regulation of KGD synthesis and, thus, in expression of citric acid cycle activity. Extracts of (photosynthetically grown) mutant strain KGD11 lack demonstrable KGD activity, and in contrast to the wild type, KGD11 is unable to grow heterotrophically on succinate, malate, or pyruvate owing to failure of the energy conversion function of the citric acid cycle. KGD11, however, grows well photosynthetically on malate or on CO2 + H2. The KGD activity level required to support the bioenergetic function of the citric acid cycle is evidently much higher than that necessary to satisfy biosynthetic demands; thus, a very low rate of succinyl-coenzyme A formation (needed for biosynthesis) in the mutant would suffice for growth under photosynthetic conditions. In wild-type R. capsulata, the α-ketoglutarate required for glutamate synthesis is ordinarily generated via citric acid cycle reactions, which include the conversions catalyzed by citrate synthase and isocitrate dehydrogenase. Mutants blocked in the former or both of these enzymes can grow photosynthetically if provided with an exogenous source of α-ketoglutarate or glutamate, but grow very poorly (if at all) as heterotrophs since the energy supply under these conditions depends on operation of the complete citric acid cycle.

Full text

PDF
592

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiking H., Sojka G. Response of Rhodopseudomonas capsulata to illumination and growth rate in a light-limited continuous culture. J Bacteriol. 1979 Aug;139(2):530–536. doi: 10.1128/jb.139.2.530-536.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amarasingham C. R., Davis B. D. Regulation of alpha-ketoglutarate dehydrogenase formation in Escherichia coli. J Biol Chem. 1965 Sep;240(9):3664–3668. [PubMed] [Google Scholar]
  3. Ames B. N., Garry B. COORDINATE REPRESSION OF THE SYNTHESIS OF FOUR HISTIDINE BIOSYNTHETIC ENZYMES BY HISTIDINE. Proc Natl Acad Sci U S A. 1959 Oct;45(10):1453–1461. doi: 10.1073/pnas.45.10.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anderson L., Fuller R. C. Photosynthesis in Rhodospirillum rubrum. 3. Metabolic control of reductive pentose phosphate and tricarboxylic acid cycle enzymes. Plant Physiol. 1967 Apr;42(4):497–509. doi: 10.1104/pp.42.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Atkinson D. E. Citrate and the citrate cycle in the regulation of energy metabolism. Biochem Soc Symp. 1968;27:23–40. [PubMed] [Google Scholar]
  6. Beale S. I., Gough S. P., Granick S. Biosynthesis of delta-aminolevulinic acid from the intact carbon skeleton of glutamic acid in greening barley. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2719–2723. doi: 10.1073/pnas.72.7.2719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen J., Miller G. W., Takemoto J. Y. Biosynthesis of delta-aminolevulinic acid in Rhodopseudomonas sphaeroides. Arch Biochem Biophys. 1981 Apr 15;208(1):221–228. doi: 10.1016/0003-9861(81)90143-0. [DOI] [PubMed] [Google Scholar]
  8. Creaghan I. T., Guest J. R. Succinate dehydrogenase-dependent nutritional requirement for succinate in mutants of Escherichia coli K12. J Gen Microbiol. 1978 Jul;107(1):1–13. doi: 10.1099/00221287-107-1-1. [DOI] [PubMed] [Google Scholar]
  9. Dierstein R., Drews G. Nitrogen-limited continuous culture of Rhodopseudomonas capsulata growing photosynthetically or heterotrophically under low oxygen tensions. Arch Microbiol. 1974;99(2):117–128. doi: 10.1007/BF00696228. [DOI] [PubMed] [Google Scholar]
  10. Englesberg E., Irr J., Power J., Lee N. Positive control of enzyme synthesis by gene C in the L-arabinose system. J Bacteriol. 1965 Oct;90(4):946–957. doi: 10.1128/jb.90.4.946-957.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harford S., Weitzman P. D. Selection for citrate synthase-deficient mutants with fluoroacetate. FEBS Lett. 1980 Jun 2;114(2):339–341. doi: 10.1016/0014-5793(80)81146-x. [DOI] [PubMed] [Google Scholar]
  12. Johansson B. C., Gest H. Inorganic nitrogen assimilation by the photosynthetic bacterium Rhodopseudomonas capsulata. J Bacteriol. 1976 Nov;128(2):683–688. doi: 10.1128/jb.128.2.683-688.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lakshmi T. M., Helling R. B. Selection for citrate synthase deficiency in icd mutants of Escherichia coli. J Bacteriol. 1976 Jul;127(1):76–83. doi: 10.1128/jb.127.1.76-83.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lohr J. B., Friedmann H. C. New pathway for delta-aminolevulinic acid biosynthesis: formation from alpha-ketoglutaric acid by two partially purified plant enzymes. Biochem Biophys Res Commun. 1976 Apr 19;69(4):908–913. doi: 10.1016/0006-291x(76)90459-9. [DOI] [PubMed] [Google Scholar]
  16. MORRISON J. F., PETERS R. A. Biochemistry of fluoroacetate poisoning: the effect of fluorocitrate on purified aconitase. Biochem J. 1954 Nov;58(3):473–479. doi: 10.1042/bj0580473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Madigan M. T., Cox J. C., Gest H. Physiology of dark fermentative growth of Rhodopseudomonas capsulata. J Bacteriol. 1980 Jun;142(3):908–915. doi: 10.1128/jb.142.3.908-915.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Madigan M. T., Gest H. Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. J Bacteriol. 1979 Jan;137(1):524–530. doi: 10.1128/jb.137.1.524-530.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. ORMEROD J. G., GEST H. Symposium on metabolism of inorganic compounds. IV. Hydrogen photosynthesis and alternative metabolic pathways in photosynthetic bacteria. Bacteriol Rev. 1962 Mar;26:51–66. doi: 10.1128/br.26.1.51-66.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. PORRA R. J., LASCELLES J. HAEMOPROTEINS AND HAEM SYNTHESIS IN FACULTATIVE PHOTOSYNTHETIC AND DENITRIFYING BACTERIA. Biochem J. 1965 Jan;94:120–126. doi: 10.1042/bj0940120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smith A. J., London J., Stanier R. Y. Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J Bacteriol. 1967 Oct;94(4):972–983. doi: 10.1128/jb.94.4.972-983.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sojka G. A., Freeze H. H., Gest H. Quantitative estimation of bacteriochlorophyll in situ. Arch Biochem Biophys. 1970 Feb;136(2):578–580. doi: 10.1016/0003-9861(70)90231-6. [DOI] [PubMed] [Google Scholar]
  23. Sojka G. A., Gest H. Integration of energy conversion and biosynthesis in the photosynthetic bacterium Rhodopseudomonas capsulata. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1486–1493. doi: 10.1073/pnas.61.4.1486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stern J. R., Bambers G. Glutamate biosynthesis in anaerobic bacteria. I. The citrate pathways of glutamate synthesis in Clostridium kluyveri. Biochemistry. 1966 Apr;5(4):1113–1118. doi: 10.1021/bi00868a001. [DOI] [PubMed] [Google Scholar]
  25. Weaver P. F., Wall J. D., Gest H. Characterization of Rhodopseudomonas capsulata. Arch Microbiol. 1975 Nov 7;105(3):207–216. doi: 10.1007/BF00447139. [DOI] [PubMed] [Google Scholar]
  26. Williamson J. R., Cooper R. H. Regulation of the citric acid cycle in mammalian systems. FEBS Lett. 1980 Aug 25;117 (Suppl):K73–K85. doi: 10.1016/0014-5793(80)80572-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES