Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 May;150(2):944–955. doi: 10.1128/jb.150.2.944-955.1982

Alcohol-resistant sporulation mutants of Bacillus subtilis.

J P Bohin, B Lubochinsky
PMCID: PMC216448  PMID: 6802803

Abstract

About 80% of Bacillus subtilis cells form spores when grown in nutrient broth. In medium containing various short-chain aliphatic alcohols, the frequency of sporulation was reduced to 0.5%. Mutants sporulated in the presence of alcohols at a frequency of 30 to 40%. Sporulation in the wild-type cells was sensitive to alcohol at the beginning of sporulation (stage zero). Sensitivity to alcohol in the mutants was also at stage zero, even though the sensitivity was considerably reduced. This sensitivity of sporulation to alcohol is the phenotypic expression of a genetic locus designated ssa. Mutations at this locus lead to a decreased sensitivity of sporulation to alcohol without modifying the sensitivity of growth. Genetic analysis by transduction was bacteriophage PBS1 revealed that ssa mutations are near the previously described spo0A locus. ssa mutants also differ from wild-type cells in the composition of membrane phospholipids. The relative amount of phosphatidylglycerol increased, whereas the relative amount of phosphatidylethanolamine and lysylphosphatidylglycerol decreased relative to the proportions in the wild type. The distribution of fatty acids in membrane lipids is the same as in the wild type. No differential sensitivity of phospholipid metabolism to alcohol could be detected in the mutant. This work therefore reveals that the extensive, pleiotropic changes in the membranes of ssa mutants are the phenotypic reflection of alterations at a specific gene locus.

Full text

PDF
947

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Berger B., Carty C. E., Ingram L. O. Alcohol-induced changes in the phospholipid molecular species of Escherichia coli. J Bacteriol. 1980 Jun;142(3):1040–1044. doi: 10.1128/jb.142.3.1040-1044.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bohin J. P., Bohin A., Schaeffer P. Increased nitrate reductase A activity as a sign of membrane alteration in early blocked asporogenous mutants of Bacillus subtilis. Biochimie. 1976;58(1-2):99–108. doi: 10.1016/s0300-9084(76)80360-4. [DOI] [PubMed] [Google Scholar]
  4. Bohin J. P., Rigomier D., Schaeffer P. Ethanol sensitivity of sporulation in Bacillus subtilis: a new tool for the analysis of the sporulation process. J Bacteriol. 1976 Aug;127(2):934–940. doi: 10.1128/jb.127.2.934-940.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brehm S. P., Staal S. P., Hoch J. A. Phenotypes of pleiotropic-negative sporulation mutants of Bacillus subtilis. J Bacteriol. 1973 Sep;115(3):1063–1070. doi: 10.1128/jb.115.3.1063-1070.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Buttke T. M., Ingram L. O. Mechanism of ethanol-induced changes in lipid composition of Escherichia coli: inhibition of saturated fatty acid synthesis in vivo. Biochemistry. 1978 Feb 21;17(4):637–644. doi: 10.1021/bi00597a012. [DOI] [PubMed] [Google Scholar]
  7. Chin J. H., Goldstein D. B. Effects of low concentrations of ethanol on the fluidity of spin-labeled erythrocyte and brain membranes. Mol Pharmacol. 1977 May;13(3):435–441. [PubMed] [Google Scholar]
  8. Chin J. H., Parsons L. M., Goldstein D. B. Increased cholesterol content of erythrocyte and brain membranes in ethanol-tolerant mice. Biochim Biophys Acta. 1978 Nov 16;513(3):358–363. doi: 10.1016/0005-2736(78)90204-3. [DOI] [PubMed] [Google Scholar]
  9. Clark D. P., Beard J. P. Altered phospholipid composition in mutants of Escherichia coli sensitive or resistant to organic solvents. J Gen Microbiol. 1979 Aug;113(2):267–274. doi: 10.1099/00221287-113-2-267. [DOI] [PubMed] [Google Scholar]
  10. Dedonder R. A., Lepesant J. A., Lepesant-Kejzlarová J., Billault A., Steinmetz M., Kunst F. Construction of a kit of reference strains for rapid genetic mapping in Bacillus subtilis 168. Appl Environ Microbiol. 1977 Apr;33(4):989–993. doi: 10.1128/aem.33.4.989-993.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fargette F., Grelet N. Mutants de Bacillus thuringiensis présentant des altérations de la sporulation: réponses morphologiques à divers traitements appliqués en phase exponentielle. C R Acad Sci Hebd Seances Acad Sci D. 1977 Oct 3;285(7):833–836. [PubMed] [Google Scholar]
  12. Farrand S. K., Taber H. W. Changes in menaquinone concentration during growth and early sporulation in Bacillus subtilis. J Bacteriol. 1974 Jan;117(1):324–326. doi: 10.1128/jb.117.1.324-326.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Freese E., Klofat W., Galliers E. Commitment to sporulation and induction of glucose-phosphoenolpyruvate-transferase. Biochim Biophys Acta. 1970 Nov 24;222(2):265–289. doi: 10.1016/0304-4165(70)90115-7. [DOI] [PubMed] [Google Scholar]
  14. Glenn A. R., Coote J. G. Cytochemical studies on alkaline phosphatase production during sporulation in Bacillus subtilis. Biochem J. 1975 Oct;152(1):85–89. doi: 10.1042/bj1520085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldman R. C. Membrane protein alterations during the early stages of sporulation of Bacillus subtilis. J Supramol Struct. 1976;5(4):457–473. doi: 10.1002/jss.400050405. [DOI] [PubMed] [Google Scholar]
  16. HOUTSMULLER U. M., VAN DEENENL ON THE ACCUMULATION OF AMINO ACID DERIVATIVES OF PHOSPHATIDYLGLYCEROL IN BACTERIA. Biochim Biophys Acta. 1964 Feb 24;84:96–98. doi: 10.1016/0926-6542(64)90106-4. [DOI] [PubMed] [Google Scholar]
  17. Hirochika H., Kobayashi Y. Suppression of temperature-sensitive sporulation of a Bacillus subtilis elongation factor G mutant by RNA polymerase mutations. J Bacteriol. 1978 Dec;136(3):883–893. [PMC free article] [PubMed] [Google Scholar]
  18. Ingram L. O., Vreeland N. S. Differential effects of ethanol and hexanol on the Escherichia coli cell envelope. J Bacteriol. 1980 Nov;144(2):481–488. doi: 10.1128/jb.144.2.481-488.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ionesco H., Michel J., Cami B., Schaeffer P. Symposium on bacterial spores: II. Genetics of sporulation in Bacillus subtilis Marburg. J Appl Bacteriol. 1970 Mar;33(1):13–24. doi: 10.1111/j.1365-2672.1970.tb05230.x. [DOI] [PubMed] [Google Scholar]
  20. Jamet C., Anagnostopoulos C. Etude d'une mutation très faiblement transformable au locus de la thréonine désaminase de Bacillus subtilis. Mol Gen Genet. 1969;105(3):225–242. doi: 10.1007/BF00337474. [DOI] [PubMed] [Google Scholar]
  21. KATES M., KUSHNER D. J., JAMES A. T. The lipid composition of Bacillus cereus as influenced by the presence of alcohols in the culture medium. Can J Biochem Physiol. 1962 Jan;40:83–94. [PubMed] [Google Scholar]
  22. Kaur S., Jayaraman K. Appearance of polyadenylated RNA species during sporulation in Bacillus polymyxa. Biochem Biophys Res Commun. 1979 Jan 30;86(2):331–339. doi: 10.1016/0006-291x(79)90870-2. [DOI] [PubMed] [Google Scholar]
  23. Lang D. R., Felix J., Lundgren D. G. Development of a membrane-bound resiratory system prior to and during sporulation in Bacillus cereus and its relationship to membrane structure. J Bacteriol. 1972 Jun;110(3):968–977. doi: 10.1128/jb.110.3.968-977.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Littleton J. M., John G. Synaptosomal membrane lipids of mice during continuous exposure to ethanol. J Pharm Pharmacol. 1977 Sep;29(9):579–580. doi: 10.1111/j.2042-7158.1977.tb11407.x. [DOI] [PubMed] [Google Scholar]
  25. Michel J. F., Cami B., Schaeffer P. Sélection de mutants de Bacillus subtilis bloqués au début de la sporulation. I. Mutants asporogènes pléotropes sélectionnés par croissance en milieu au nitrate. Ann Inst Pasteur (Paris) 1968 Jan;114(1):11–20. [PubMed] [Google Scholar]
  26. Michel J. F., Cami B. Sélection de mutants de Bacillus subtilis bloqués au début de la sporulation. Nature des mutations sélectionnées. Ann Inst Pasteur (Paris) 1969 Jan;116(1):3–18. [PubMed] [Google Scholar]
  27. Michel J. F., Piechaud M., Schaeffer P. Constituvité vis-a-vis du nitrate de la nitrate-réductase chez les mutants asporogènes précoces de bacillus subtilis. Ann Inst Pasteur (Paris) 1970 Dec;119(6):711–718. [PubMed] [Google Scholar]
  28. Paterson S. J., Butler K. W., Huang P., Labelle J., Smith I. C., Schneider H. The effects of alcohols on lipid bilayers: a spin label study. Biochim Biophys Acta. 1972 Jun 20;266(3):597–602. doi: 10.1016/0006-3002(72)90003-0. [DOI] [PubMed] [Google Scholar]
  29. Piggot P. J., Coote J. G. Genetic aspects of bacterial endospore formation. Bacteriol Rev. 1976 Dec;40(4):908–962. doi: 10.1128/br.40.4.908-962.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Remsen C. C., Lundgren D. G., Slepecky R. A. Inhibition of the development of the spore septum and membranes in Bacillus cereus by beta-phenethyl alcohol. J Bacteriol. 1966 Jan;91(1):324–331. doi: 10.1128/jb.91.1.324-331.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rhaese H. J., Groscurth R. Apparent dependence of sporulation on synthesis of highly phosphorylated nucleotides in Bacillus subtilis. Proc Natl Acad Sci U S A. 1979 Feb;76(2):842–846. doi: 10.1073/pnas.76.2.842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rigomier D., Bohin J. P., Lubochinsky B. Effects of ethanol and methanol on lipid metabolism in Bacillus subtilis. J Gen Microbiol. 1980 Nov;121(1):139–149. doi: 10.1099/00221287-121-1-139. [DOI] [PubMed] [Google Scholar]
  33. Rigomier D., Lubochinsky B. Métabolisme des phospholipides chez des mutants asporogènes de Bacillus subtilis au cours de la croissance exponentielle. Ann Microbiol (Paris) 1974 Sep;125 B(2):295–303. [PubMed] [Google Scholar]
  34. SLEPECKY R. A. INHIBITION OF SPORULATION AND GERMINATION OF BACILLUS MEGATERIUM BY PHENETHYL ALCOHOL. Biochem Biophys Res Commun. 1963 Aug 14;12:369–373. doi: 10.1016/0006-291x(63)90107-4. [DOI] [PubMed] [Google Scholar]
  35. Silva M. T., Sousa J. C., Macedo M. A., Polónia J., Parente A. M. Effects of phenethyl alcohol on Bacillus and Streptococcus. J Bacteriol. 1976 Sep;127(3):1359–1369. doi: 10.1128/jb.127.3.1359-1369.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Staal S. P., Hoch J. A. Conditional dihydrostreptomycin resistance in Bacillus subtilis. J Bacteriol. 1972 Apr;110(1):202–207. doi: 10.1128/jb.110.1.202-207.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sterlini J. M., Mandelstam J. Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J. 1969 Jun;113(1):29–37. doi: 10.1042/bj1130029. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES