Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Feb;149(2):449–457. doi: 10.1128/jb.149.2.449-457.1982

Transposition of a chromosomal segment bounded by redundant rRNA genes into other rRNA genes in Escherichia coli.

C W Hill, B W Harnish
PMCID: PMC216528  PMID: 6173373

Abstract

We have constructed several mutants of Escherichia coli which have the chromosomal segment between the directly repeated rrnB and rrnE genes deleted from the normal position and transposed into another one of the seven redundant rRNA genes. We have examples where the transposition has been into rrnC, rrnD, rrnG, and rrnH. Included in the evidence for each of these transpositions was the finding that each transposition specifically affected a different one of the seven BamHI-PstI restriction nuclease fragments known to correspond to the seven rrn genes. The transposition mutants were generally healthy, but sensitive mixed-growth experiments revealed that most of them grew somewhat more slowly than the parental control in rich medium. The maximal detrimental effect was a 4 to 5% reduction in growth rate when the transposition of the rrnB-rrnE segment was into rrnG. We have found that a rrnF gene, reported by others to be linked to malA, does not exist in our standard strain, a derivative of Cavalli Hfr. Instead of rrnF, we identified a new rrn gene, rrnH, which mapped near min 5.

Full text

PDF
451

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. P., Roth J. R. Gene duplication in bacteria: alteration of gene dosage by sister-chromosome exchanges. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):1083–1087. doi: 10.1101/sqb.1979.043.01.120. [DOI] [PubMed] [Google Scholar]
  2. Bachmann B. J., Low K. B., Taylor A. L. Recalibrated linkage map of Escherichia coli K-12. Bacteriol Rev. 1976 Mar;40(1):116–167. doi: 10.1128/br.40.1.116-167.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boros I., Kiss A., Venetianer P. Physical map of the seven ribosomal RNA genes of Escherichia coli. Nucleic Acids Res. 1979;6(5):1817–1830. doi: 10.1093/nar/6.5.1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol. 1981 May 15;148(2):107–127. doi: 10.1016/0022-2836(81)90508-8. [DOI] [PubMed] [Google Scholar]
  5. Carbon J., Squires C., Hill C. W. Glycine transfer RNA of Escherichia coli. II. Impaired GGA-recognition in strains containing a genetically altered transfer RNA; reversal by a secondary suppressor mutation. J Mol Biol. 1970 Sep 28;52(3):571–584. doi: 10.1016/0022-2836(70)90420-1. [DOI] [PubMed] [Google Scholar]
  6. Deonier R. C., Otsubo E., Lee H. J., Davidson N. Electron microscope heteroduplex studies of sequence relations among plasmids of Escherichia coli. VII. Mapping the ribosomal RNA genes of plasmid F14. J Mol Biol. 1974 Nov 15;89(4):619–629. doi: 10.1016/0022-2836(74)90039-4. [DOI] [PubMed] [Google Scholar]
  7. Hill C. W., Combriato G. Genetic duplications induced at very high frequency by ultraviolet irradiation in Escherichia coli. Mol Gen Genet. 1973 Dec 31;127(3):197–214. doi: 10.1007/BF00333760. [DOI] [PubMed] [Google Scholar]
  8. Hill C. W., Foulds J., Soll L., Berg P. Instability of a missense suppressor resulting from a duplication of genetic material. J Mol Biol. 1969 Feb 14;39(3):563–581. doi: 10.1016/0022-2836(69)90146-6. [DOI] [PubMed] [Google Scholar]
  9. Hill C. W., Grafstrom R. H., Harnish B. W., Hillman B. S. Tandem duplications resulting from recombination between ribosomal RNA genes in Escherichia coli. J Mol Biol. 1977 Nov 5;116(3):407–428. doi: 10.1016/0022-2836(77)90077-8. [DOI] [PubMed] [Google Scholar]
  10. Hill C. W., Harnish B. W. Inversions between ribosomal RNA genes of Escherichia coli. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7069–7072. doi: 10.1073/pnas.78.11.7069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jorgensen P. A ribosomal RNA gene of Escherichia coli (rrnD) on lamnda daro E specialized transducing phages. Mol Gen Genet. 1976 Aug 2;146(3):303–307. doi: 10.1007/BF00701255. [DOI] [PubMed] [Google Scholar]
  12. Lehner A. F., Hill C. W. Involvement of ribosomal ribonucleic acid operons in Salmonella typhimurium chromosomal rearrangements. J Bacteriol. 1980 Jul;143(1):492–498. doi: 10.1128/jb.143.1.492-498.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reid P., Berg P. T4 bacteriophage mutants suppressible by a missense suppressor which inserts glycine in place of arginine for the codon AGA. J Virol. 1968 Sep;2(9):905–914. doi: 10.1128/jvi.2.9.905-914.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Riley M., Anilionis A. Evolution of the bacterial genome. Annu Rev Microbiol. 1978;32:519–560. doi: 10.1146/annurev.mi.32.100178.002511. [DOI] [PubMed] [Google Scholar]
  15. Schmid M., Roth J. R. Circularization of transduced fragments: a mechanism for adding segments to the bacterial chromosome. Genetics. 1980 Jan;94(1):15–29. doi: 10.1093/genetics/94.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Streicher S. L., Bender R. A., Magasanik B. Genetic control of glutamine synthetase in Klebiella aerogenes. J Bacteriol. 1975 Jan;121(1):320–331. doi: 10.1128/jb.121.1.320-331.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vola C., Jarry B., Rosset R. Linkage of 5S RNA and 16S+23S RNA genes on the E. coli chromosome. Mol Gen Genet. 1977 Jun 24;153(3):337–341. doi: 10.1007/BF00431599. [DOI] [PubMed] [Google Scholar]
  18. Zurawski G., Brown K. D. Ribosomal RNA genes in the 56 minute region of the Escherichia coli chromosome. J Mol Biol. 1979 May 5;130(1):83–96. doi: 10.1016/0022-2836(79)90553-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES