Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Aug;139(2):671–674. doi: 10.1128/jb.139.2.671-674.1979

Inhibition of deoxyribonucleic acid repair in Escherichia coli by caffeine and acriflavine after ultraviolet irradiation.

K Fong, R C Bockrath
PMCID: PMC216920  PMID: 378983

Abstract

The effects of caffeine and acriflavine on cell survival, single-strand deoxyribonucleic acid break formation, and postreplication repair in Escherichia coli wild-type WP2 and WP2 uvrA strains after ultraviolet irradiation was studied. Caffeine (0.5 mg/ml) added before and immediately after ultraviolet irradiation inhibited single-strand deoxyribonucleic acid breakage in wild-type WP2 cells. Single-strand breaks, once formed, were no longer subject to repair inhibition by caffeine. At 0.5 to 2 mg/ml, caffeine did not affect postreplication repair in uvrA strains. These data are consistent with the survival data of both irradiated WP2 and uvrA strains in the presence and absence of caffeine. In unirradiated WP2 and uvrA strains, however, a high caffeine concentration (greater than 2 mg/ml) resulted in gradual reduction of colony-forming units. At a concentration insufficient to alter survival of unirradiated cells, acriflavine (2 microgram/ml) inhibited both single-strand deoxyribonucleic acid breakage and postreplication repair after ultraviolet irradiation. These data suggest that although the modes of action for both caffeine and acriflavine may be similar in the inhibition of single-strand deoxyribonucleic acid break formation, they differ in their mechanisms of action on postreplication repair.

Full text

PDF
672

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEUKERS R., BERENDS W. Isolation and identification of the irradiation product of thymine. Biochim Biophys Acta. 1960 Jul 15;41:550–551. doi: 10.1016/0006-3002(60)90063-9. [DOI] [PubMed] [Google Scholar]
  2. Braun A., Grossman L. An endonuclease from Escherichia coli that acts preferentially on UV-irradiated DNA and is absent from the uvrA and uvrB mutants. Proc Natl Acad Sci U S A. 1974 May;71(5):1838–1842. doi: 10.1073/pnas.71.5.1838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braun A., Hopper P., Grossman L. The Escherichia coli UV endonuclease (correndonuclease II). Basic Life Sci. 1975;5A:183–190. doi: 10.1007/978-1-4684-2895-7_22. [DOI] [PubMed] [Google Scholar]
  4. Clarke C. H. Caffeine- and amino acid-effects upon try(plus) revertant yield in U.V.-irradiated hcr(plus) and hcr (minus) mutants of E. coli B-r. Mol Gen Genet. 1967;99(1):97–108. doi: 10.1007/BF00306462. [DOI] [PubMed] [Google Scholar]
  5. Fong K., Bockrath R. C. Evidence for two modes of DNA degradation in Escherichia coli following ultraviolet irradiation. Radiat Res. 1977 Oct;72(1):134–144. [PubMed] [Google Scholar]
  6. Fujiwara Y., Tatsumi M. Replicative bypass repair of ultraviolet damage to DNA of mammalian cells: caffeine sensitive and caffeine resistant mechanisms. Mutat Res. 1976 Oct;37(1):91–110. doi: 10.1016/0027-5107(76)90058-0. [DOI] [PubMed] [Google Scholar]
  7. Ganesan A. K. Persistence of pyrimidine dimers during post-replication repair in ultraviolet light-irradiated Escherichia coli K12. J Mol Biol. 1974 Jul 25;87(1):103–119. doi: 10.1016/0022-2836(74)90563-4. [DOI] [PubMed] [Google Scholar]
  8. Grigg G. W. Caffeine-death in Escherichia coli. Mol Gen Genet. 1968;102(4):316–335. doi: 10.1007/BF00433723. [DOI] [PubMed] [Google Scholar]
  9. Harm W. Differential effects of acriflavine and caffeine on various ultraviolet-irradiated Escherichia coli strains and T1 phage. Mutat Res. 1967 Mar-Apr;4(2):93–110. doi: 10.1016/0027-5107(67)90061-9. [DOI] [PubMed] [Google Scholar]
  10. Lehmann A. R., Kirk-Bell S., Arlett C. F., Paterson M. C., Lohman P. H., de Weerd-Kastelein E. A., Bootsma D. Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. Proc Natl Acad Sci U S A. 1975 Jan;72(1):219–223. doi: 10.1073/pnas.72.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McCulley C. M., Johnson R. C. The absence of caffeine inhibition of post-replication repair in excision deficient strains of Escherichia coli B and K12. Mutat Res. 1976 Jun;38(3):207–214. doi: 10.1016/0165-1161(76)90192-8. [DOI] [PubMed] [Google Scholar]
  12. Rothman R. H., Clark A. J. The dependence of postreplication repair on uvrB in a recF mutant of Escherichia coli K-12. Mol Gen Genet. 1977 Oct 24;155(3):279–286. doi: 10.1007/BF00272806. [DOI] [PubMed] [Google Scholar]
  13. Rupp W. D., Howard-Flanders P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol. 1968 Jan 28;31(2):291–304. doi: 10.1016/0022-2836(68)90445-2. [DOI] [PubMed] [Google Scholar]
  14. Rupp W. D., Wilde C. E., 3rd, Reno D. L., Howard-Flanders P. Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli. J Mol Biol. 1971 Oct 14;61(1):25–44. doi: 10.1016/0022-2836(71)90204-x. [DOI] [PubMed] [Google Scholar]
  15. Sedli-ková M., Brozmanová J., Slezáriková V., Masek F., Fandlová E. Function of the UVR marker in dark repair of DNA molecules. Neoplasma. 1975;22(4):361–384. [PubMed] [Google Scholar]
  16. Setlow R. B., Setlow J. K. Effects of radiation on polynucleotides. Annu Rev Biophys Bioeng. 1972;1:293–346. doi: 10.1146/annurev.bb.01.060172.001453. [DOI] [PubMed] [Google Scholar]
  17. Sideropoulos A. S., Shankel D. M. Mechanism of caffeine enhancement of mutations induced by sublethal ultraviolet dosages. J Bacteriol. 1968 Jul;96(1):198–204. doi: 10.1128/jb.96.1.198-204.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WITKIN E. M. THE EFFECT OF ACRIFLAVINE ON PHOTOREVERSAL OF LETHAL AND MUTAGENIC DAMAGE PRODUCED IN BACTERIA BY ULTRAVIOLET LIGHT. Proc Natl Acad Sci U S A. 1963 Sep;50:425–430. doi: 10.1073/pnas.50.3.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev. 1976 Dec;40(4):869–907. doi: 10.1128/br.40.4.869-907.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES