Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Jun;146(3):1154–1157. doi: 10.1128/jb.146.3.1154-1157.1981

Transformation of Azotobacter vinelandii with Plasmids RP4 (IncP-1 Group) and RSF1010 (IncQ Group)

Michel David 1,, Maurice Tronchet 1,, Jean Dénarié 1,
PMCID: PMC216972  PMID: 7016829

Abstract

Multicopy plasmid RSF1010 and four of its in vitro-constructed derivatives were mobilized by the self-transmissible RP4 plasmid into Azotobacter vinelandii UW. Modifications of the Escherichia coli transformation procedure of Cohen et al. (Proc. Natl. Acad. Sci. U.S.A. 69:2110–2114, 1972) allowed transformation of A. vinelandii strains UW and ATCC 12837 with purified RP4 or RSF1010 deoxyribonucleic acid.

Full text

PDF
1156

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bishop P. E., Brill W. J. Genetic analysis of Azotobacter vinelandii mutant strains unable to fix nitrogen. J Bacteriol. 1977 May;130(2):954–956. doi: 10.1128/jb.130.2.954-956.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bishop P. E., Dazzo F. B., Appelbaum E. R., Maier R. J., Brill W. J. Intergeneric transfer of genes involved in the Rhizobium-legume symbiosis. Science. 1977 Dec 2;198(4320):938–940. doi: 10.1126/science.929179. [DOI] [PubMed] [Google Scholar]
  3. Boucher C., Bergeron B., De Bertalmio M. B., Dénarié J. Introduction of bacteriophage Mu into Pseudomonas solanacearum and Rhizobium meliloti using the R factor RP4. J Gen Microbiol. 1977 Jan;98(1):253–263. doi: 10.1099/00221287-98-1-253. [DOI] [PubMed] [Google Scholar]
  4. Cannon F. C., Postgate J. R. Expression of Klebsiella nitrogen fixation genes (nif) in Azotobacter. Nature. 1976 Mar 18;260(5548):271–272. doi: 10.1038/260271a0. [DOI] [PubMed] [Google Scholar]
  5. Chakrabarty A. M., Mylroie J. R., Friello D. A., Vacca J. G. Transformation of Pseudomonas putida and Escherichia coli with plasmid-linked drug-resistance factor DNA. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3647–3651. doi: 10.1073/pnas.72.9.3647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohen S. N., Chang A. C., Hsu L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2110–2114. doi: 10.1073/pnas.69.8.2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guerry P., van Embden J., Falkow S. Molecular nature of two nonconjugative plasmids carrying drug resistance genes. J Bacteriol. 1974 Feb;117(2):619–630. doi: 10.1128/jb.117.2.619-630.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lederberg E. M., Cohen S. N. Transformation of Salmonella typhimurium by plasmid deoxyribonucleic acid. J Bacteriol. 1974 Sep;119(3):1072–1074. doi: 10.1128/jb.119.3.1072-1074.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Maier R. J., Bishop P. E., Brill W. J. Transfer from Rhizobium japonicum to Azotobacter vinelandii of genes required for nodulation. J Bacteriol. 1978 Jun;134(3):1199–1201. doi: 10.1128/jb.134.3.1199-1201.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Meyers J. A., Sanchez D., Elwell L. P., Falkow S. Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid. J Bacteriol. 1976 Sep;127(3):1529–1537. doi: 10.1128/jb.127.3.1529-1537.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nagahari K., Sakaguchi K. RSF1010 plasmid as a potentially useful vector in Pseudomonas species. J Bacteriol. 1978 Mar;133(3):1527–1529. doi: 10.1128/jb.133.3.1527-1529.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Olsen R. H., Siak J. S., Gray R. H. Characteristics of PRD1, a plasmid-dependent broad host range DNA bacteriophage. J Virol. 1974 Sep;14(3):689–699. doi: 10.1128/jvi.14.3.689-699.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Page W. J., Sadoff H. L. Control of transformation competence in Azotobacter vinelandii by nitrogen catabolite derepression. J Bacteriol. 1976 Mar;125(3):1088–1095. doi: 10.1128/jb.125.3.1088-1095.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Page W. J., Sadoff H. L. Physiological factors affecting transformation of Azotobacter vinelandii. J Bacteriol. 1976 Mar;125(3):1080–1087. doi: 10.1128/jb.125.3.1080-1087.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Page W. J. Transformation of Azotobacter vinelandii strains unable to fix nitrogen with Rhizobium spp. DNA. Can J Microbiol. 1978 Mar;24(3):209–214. doi: 10.1139/m78-038. [DOI] [PubMed] [Google Scholar]
  16. Page W. J., von Tigerstrom M. Optimal conditions for transformation of Azotobacter vinelandii. J Bacteriol. 1979 Sep;139(3):1058–1061. doi: 10.1128/jb.139.3.1058-1061.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shah V. K., Davis I. C., Gordon J. K., Orme-Johnson W. H., Brill W. J. Nitrogenase. 3. Nitrogenaseless mutants of Azotobacter vinelandii: activities, cross-reactions and EPR spectra. Biochim Biophys Acta. 1973 Jan 18;292(1):246–255. doi: 10.1016/0005-2728(73)90269-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES