Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 May;146(2):552–563. doi: 10.1128/jb.146.2.552-563.1981

Role of ribonucleic acid synthesis in conjugational transfer of chromosomal and plasmid deoxyribonucleic acids.

L J Maturin Sr, R Curtiss 3rd
PMCID: PMC216998  PMID: 6163764

Abstract

A strain of Escherichia coli K-12 containing mutations that allow for the experimental control of RNA and DNA syntheses was constructed to investigate the role that RNA synthesis plays in conjugational DNA transfer when DNA replication is inhibited. The mutations possessed by this strain and its donor derivatives include: (i) thyA, which blocks synthesis of dTMP, causing a requirement for thymine; (ii) deoC, which blocks breakdown of deoxyribose 5-phosphate, permitting growth with low levels of thymine; (iii) pyrF, which blocks synthesis of UMP from OMP, imposing a requirement for uridine; (iv) cdd and pyrG, which block the deamination of cytidine to uridine and the synthesis of CTP from UTP, respectively, causing a requirement for cytidine; (v) codA and codB, which block the deamination of cytosine to uracil and cytosine transport, respectively, preventing the substitution of cytosine for cytidine; and (vi) dnaB, which blocks vegetative but not conjugational DNA replication at 42 degrees C. DNA synthesis can be blocked in the donor strains by the addition of excess uridine when exogenous thymine is not present. We found that RNA synthesis can also be blocked by addition of excess uridine when exogenous cytidine is not present. Blocking RNA synthesis prior to mating, under conditions in which DNA synthesis either is or is not inhibited, depresses DNA transfer. However, under conditions in which DNA synthesis is inhibited, the blocking of RNA synthesis immediately after mating has commenced had no effect on continued conjugational transfer of DNA. Thus, RNA synthesis is needed to initiate but not to continue conjugational DNA transfer.

Full text

PDF
553

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achtman M., Skurray R. A., Thompson R., Helmuth R., Hall S., Beutin L., Clark A. J. Assignment of tra cistrons to EcoRI fragments of F sex factor DNA. J Bacteriol. 1978 Mar;133(3):1383–1392. doi: 10.1128/jb.133.3.1383-1392.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bachmann B. J., Low K. B. Linkage map of Escherichia coli K-12, edition 6. Microbiol Rev. 1980 Mar;44(1):1–56. doi: 10.1128/mr.44.1.1-56.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barbour S. D. Effect of nalidixic acid on conjugational transfer and expression of episomal lac genes in Escherichia coli K12. J Mol Biol. 1967 Sep 14;28(2):373–376. doi: 10.1016/s0022-2836(67)80016-0. [DOI] [PubMed] [Google Scholar]
  4. Berg C. M., Curtiss R., 3rd Transposition derivatives of an Hfr strain of Escherichia coli K-12. Genetics. 1967 Jul;56(3):503–525. doi: 10.1093/genetics/56.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bonhoeffer F. DNA transfer and DNA synthesis during bacterial conjugation. Z Vererbungsl. 1966;98(2):141–149. doi: 10.1007/BF00897186. [DOI] [PubMed] [Google Scholar]
  6. Boulnois G. J., Beddoes M. J., Wilkins B. M. Rifampin disrupts conjugal and chromosomal deoxyribonucleic acid metabolism in Escherichia coli K-12 carrying some IncIalpha plasmids. J Bacteriol. 1979 May;138(2):324–332. doi: 10.1128/jb.138.2.324-332.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen A., Fisher W. D., Curtiss R., 3rd, Adler H. I. DNA isolated from Escherichia coli minicells mated with F+ cells. Proc Natl Acad Sci U S A. 1968 Sep;61(1):61–68. doi: 10.1073/pnas.61.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cohen A., Fisher W. D., Curtiss R., 3rd, Adler H. I. The properties of DNA transferred to minicells during conjugation. Cold Spring Harb Symp Quant Biol. 1968;33:635–641. doi: 10.1101/sqb.1968.033.01.071. [DOI] [PubMed] [Google Scholar]
  9. Curtiss R., 3rd Bacterial conjugation. Annu Rev Microbiol. 1969;23:69–136. doi: 10.1146/annurev.mi.23.100169.000441. [DOI] [PubMed] [Google Scholar]
  10. Curtiss R., 3rd, Caro L. G., Allison D. P., Stallions D. R. Early stages of conjugation in Escherichia coli. J Bacteriol. 1969 Nov;100(2):1091–1104. doi: 10.1128/jb.100.2.1091-1104.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Curtiss R., 3rd, Charamella L. J., Berg C. M., Harris P. E. Kinetic and genetic analyses of D-cycloserine inhibition and resistance in Escherichia coli. J Bacteriol. 1965 Nov;90(5):1238–1250. doi: 10.1128/jb.90.5.1238-1250.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Curtiss R., 3rd, Charamella L. J., Stallions D. R., Mays J. A. Parental functions during conjugation in Escherichia coli K-12. Bacteriol Rev. 1968 Dec;32(4 Pt 1):320–348. [PMC free article] [PubMed] [Google Scholar]
  13. Everett R., Willetts N. Characterisation of an in vivo system for nicking at the origin of conjugal DNA transfer of the sex factor F. J Mol Biol. 1980 Jan 15;136(2):129–150. doi: 10.1016/0022-2836(80)90309-5. [DOI] [PubMed] [Google Scholar]
  14. Fenwick R. G., Jr, Curtiss R., 3rd Conjugal deoxyribonucleic acid replication by Escherichia coli K-12: effect of nalidixic acid. J Bacteriol. 1973 Dec;116(3):1236–1246. doi: 10.1128/jb.116.3.1236-1246.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fenwick R. G., Jr, Curtiss R., 3rd Conjugal deoxyribonucleic acid replication by Escherichia coli K-12: stimulation in dnaB(ts) donors by minicells. J Bacteriol. 1973 Dec;116(3):1212–1223. doi: 10.1128/jb.116.3.1212-1223.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fenwick R. G., Jr, Curtiss R., 3rd Conjugal deoxyribonucleic acid replication by Excherichia coli K-12: effect of chloramphenicol and rifampin. J Bacteriol. 1973 Dec;116(3):1224–1235. doi: 10.1128/jb.116.3.1224-1235.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fisher K. W., Fisher M. B. Nalidixic acid inhibition of DNA transfer in Escherichia coli K12. Cold Spring Harb Symp Quant Biol. 1968;33:629–633. doi: 10.1101/sqb.1968.033.01.070. [DOI] [PubMed] [Google Scholar]
  18. Freifelder D. Technique for starvation of Escherichia coli of thymine. J Bacteriol. 1965 Oct;90(4):1153–1154. doi: 10.1128/jb.90.4.1153-1154.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gilbert W., Dressler D. DNA replication: the rolling circle model. Cold Spring Harb Symp Quant Biol. 1968;33:473–484. doi: 10.1101/sqb.1968.033.01.055. [DOI] [PubMed] [Google Scholar]
  20. Hiraga S., Igarashi K., Yura T. A deoxythymidine kinase-deficient mutant of Escherichia coli. I. Isolation and some properties. Biochim Biophys Acta. 1967 Aug 22;145(1):41–51. doi: 10.1016/0005-2787(67)90652-1. [DOI] [PubMed] [Google Scholar]
  21. Karlström O. Mutants of Escherichia coli defective in ribonucleoside and deoxyribonucleoside catabolism. J Bacteriol. 1968 Mar;95(3):1069–1077. doi: 10.1128/jb.95.3.1069-1077.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kennedy N., Beutin L., Achtman M., Skurray R., Rahmsdorf U., Herrlich P. Conjugation proteins encoded by the F sex factor. Nature. 1977 Dec 15;270(5638):580–585. doi: 10.1038/270580a0. [DOI] [PubMed] [Google Scholar]
  23. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  24. Lanka E., Scherzinger E., Günther E., Schuster H. A DNA primase specified by I-like plasmids. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3632–3636. doi: 10.1073/pnas.76.8.3632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Meynell G. G., Lawn A. M. Filamentous phages specific for the I sex factor. Nature. 1968 Mar 23;217(5134):1184–1186. doi: 10.1038/2171184a0. [DOI] [PubMed] [Google Scholar]
  26. Neuhard J., Ingraham J. Mutants of Salmonella typhimurium requiring cytidine for growth. J Bacteriol. 1968 Jun;95(6):2431–2433. doi: 10.1128/jb.95.6.2431-2433.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Neuhard J., Thomassen E. Deoxycytidine triphosphate deaminase: identification and function in Salmonella typhimurium. J Bacteriol. 1971 Feb;105(2):657–665. doi: 10.1128/jb.105.2.657-665.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. O'Donovan G. A., Neuhard J. Pyrimidine metabolism in microorganisms. Bacteriol Rev. 1970 Sep;34(3):278–343. doi: 10.1128/br.34.3.278-343.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ohki M., Tomizawa J. Asymmetric transfer of DNA strands in bacterial conjugation. Cold Spring Harb Symp Quant Biol. 1968;33:651–658. doi: 10.1101/sqb.1968.033.01.074. [DOI] [PubMed] [Google Scholar]
  30. Paul A. V., Riley M. Joint molecule formation following conjugation in wild type and mutant Escherichia coli recipients. J Mol Biol. 1974 Jan 5;82(1):35–56. doi: 10.1016/0022-2836(74)90573-7. [DOI] [PubMed] [Google Scholar]
  31. Piérard A., Glansdorff N., Gigot D., Crabeel M., Halleux P., Thiry L. Repression of Escherichia coli carbamoylphosphate synthase: relationships with enzyme synthesis in the arginine and pyrimidine pathways. J Bacteriol. 1976 Jul;127(1):291–301. doi: 10.1128/jb.127.1.291-301.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Roozen K. J., Fenwick R. G., Jr, Curtiss R., 3rd Synthesis of ribonucleic acid and protein in plasmid-containing minicells of Escherichia coli K-12. J Bacteriol. 1971 Jul;107(1):21–33. doi: 10.1128/jb.107.1.21-33.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rupp W. D., Ihler G. Strand selection during bacterial mating. Cold Spring Harb Symp Quant Biol. 1968;33:647–650. doi: 10.1101/sqb.1968.033.01.073. [DOI] [PubMed] [Google Scholar]
  34. Sarathy P. V., Siddiqi O. DNA synthesis during bacterial conjugation. I. Effect of mating on DNA replication in Escherichia coli Hfr. J Mol Biol. 1973 Aug 15;78(3):427–441. doi: 10.1016/0022-2836(73)90466-x. [DOI] [PubMed] [Google Scholar]
  35. Schwartz M., Neuhard J. Control of expression of the pyr genes in Salmonella typhimurium: effects of variations in uridine and cytidine nucleotide pools. J Bacteriol. 1975 Mar;121(3):814–822. doi: 10.1128/jb.121.3.814-822.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stallions D. R., Curtiss R., 3rd Chromosome transfer and recombinant formation with deoxyribonucleic acid temperature-sensitive strains of Escherichia coli. J Bacteriol. 1971 Mar;105(3):886–895. doi: 10.1128/jb.105.3.886-895.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sugino A., Peebles C. L., Kreuzer K. N., Cozzarelli N. R. Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4767–4771. doi: 10.1073/pnas.74.11.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vapnek D., Lipman M. B., Rupp W. D. Physical properties and mechanism of transfer of R factors in Escherichia coli. J Bacteriol. 1971 Oct;108(1):508–514. doi: 10.1128/jb.108.1.508-514.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vapnek D., Rupp W. D. Asymmetric segregation of the complementary sex-factor DNA strands during conjugation in Escherichia coli. J Mol Biol. 1970 Nov 14;53(3):287–303. doi: 10.1016/0022-2836(70)90066-5. [DOI] [PubMed] [Google Scholar]
  40. Vapnek D., Rupp W. D. Identification of individual sex-factor DNA strands and their replication during conjugation in thermosensitive DNA mutants of Escherichia coli. J Mol Biol. 1971 Sep 28;60(3):413–424. doi: 10.1016/0022-2836(71)90178-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES