Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Apr;146(1):398–403. doi: 10.1128/jb.146.1.398-403.1981

Characterization of the predominant Azotobacter vinelandii envelope protein.

S P Schenk, C F Earhart
PMCID: PMC217096  PMID: 6783619

Abstract

A protein with a molecular weight of 60,000 (60K) constitutes approximately 20% of the envelope protein of Azotobacter vinelandii. This protein was removed from cells and purified from other proteins by a simple washing procedure that had no effect on cell viability. Anti-60K antiserum blocked azotophage A-22 adsorption and agglutinated both vegetative cells and cysts; ferritin-conjugated antibodies used in indirect labeling studies bound uniformly to the periphery of vegetative cells. We conclude that 60K is present on the outer surface of vegetative cells and cysts. The protein is similar to the surface protein alpha of Acinetobacter ssp. in molecular weight, reassociation characteristics, and high ratio of acidic to basic amino acids. We propose that 60K forms a layer external to the outer membrane of A. vinelandii.

Full text

PDF
399

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown D. T., Gliedman J. B. Morphological variants of Sindbis virus obtained from infected mosquito tissue culture cells. J Virol. 1973 Dec;12(6):1534–1539. doi: 10.1128/jvi.12.6.1534-1539.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buckmire F. L., Murray R. G. Studies on the cell wall of Spirillum serpens. II. Chemical characterization of the outer structured layer. Can J Microbiol. 1973 Jan;19(1):59–66. doi: 10.1139/m73-009. [DOI] [PubMed] [Google Scholar]
  3. Cho K. Y., Pope L., Wyss O. Formation of protoplasts in Azotobacter vinelandii. Arch Microbiol. 1974;101(4):337–342. doi: 10.1007/BF00455949. [DOI] [PubMed] [Google Scholar]
  4. DAVIS R. J., CLAPP C. E. Preparation of purified polysaccharides from Rhizobium. Appl Microbiol. 1961 Nov;9:519–524. doi: 10.1128/am.9.6.519-524.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DUFF J. T., WYSS O. Isolation and classification of a new series of Azotobacter bacteriophages. J Gen Microbiol. 1961 Feb;24:273–289. doi: 10.1099/00221287-24-2-273. [DOI] [PubMed] [Google Scholar]
  6. Hitchins V. M., Sadoff H. L. Morphogenesis of cysts in Azotobacter vinelandii. J Bacteriol. 1970 Oct;104(1):492–498. doi: 10.1128/jb.104.1.492-498.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Lugtenberg B., Meijers J., Peters R., van der Hoek P., van Alphen L. Electrophoretic resolution of the "major outer membrane protein" of Escherichia coli K12 into four bands. FEBS Lett. 1975 Oct 15;58(1):254–258. doi: 10.1016/0014-5793(75)80272-9. [DOI] [PubMed] [Google Scholar]
  11. OUCHTERLONY O. Diffusion-in-gel methods for immunological analysis. Prog Allergy. 1958;5:1–78. [PubMed] [Google Scholar]
  12. Sadoff H. L. Comparative aspects of morphogenesis in three prokaryotic genera. Annu Rev Microbiol. 1973;27:133–153. doi: 10.1146/annurev.mi.27.100173.001025. [DOI] [PubMed] [Google Scholar]
  13. Schenk S. P., Earhart C. F., Wyss O. A unique envelope protein in azotobacter vinelandii. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1452–1458. doi: 10.1016/s0006-291x(77)80142-3. [DOI] [PubMed] [Google Scholar]
  14. Schenk S. P., Wyss O. Influence of oxygen on phospholipid production and colony formation in a nitrogen-fixing mutant of Azotobacter vinelandii. J Bacteriol. 1977 Jun;130(3):1382–1386. doi: 10.1128/jb.130.3.1382-1386.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sleytr U. B. Regular arrays of macromolecules on bacterial cell walls: structure, chemistry, assembly, and function. Int Rev Cytol. 1978;53:1–62. doi: 10.1016/s0074-7696(08)62240-8. [DOI] [PubMed] [Google Scholar]
  16. Thorne K. J., Oliver R. C., Glauert A. M. Synthesis and turnover of the regularly arranged surface protein of Acinetobacter sp. relative to the other components of the cell envelope. J Bacteriol. 1976 Jul;127(1):440–450. doi: 10.1128/jb.127.1.440-450.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Thorne K. J. Regularly arranged protein on the surfaces of Gram-negative bacteria. Biol Rev Camb Philos Soc. 1977 May;52(2):219–234. doi: 10.1111/j.1469-185x.1977.tb01351.x. [DOI] [PubMed] [Google Scholar]
  18. Thornley M. J. Cell envelopes with regularly arranged surface subunits in Acinetobacter and related bacteria. CRC Crit Rev Microbiol. 1975 Oct;4(1):65–100. doi: 10.3109/10408417509105487. [DOI] [PubMed] [Google Scholar]
  19. Thornley M. J., Thorne K. J., Glauert A. M. Detachment and chemical characterization of the regularly arranged subunits from the surface of an Acinetobacter. J Bacteriol. 1974 May;118(2):654–662. doi: 10.1128/jb.118.2.654-662.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES