Abstract
The effect of CO2+ on the synthesis and activation of Bacillus licheniformis MC14 alkaline phosphatase has been shown by the development of a defined minimal salts medium in which this organism produces 35 times more (assayable) alkaline phosphatase than when grown in a low-phosphate complex medium or in the defined medium without cobalt. Stimulation of enzyme activity with cobalt is dependent on a low phosphate concentration in the medium (below 0.075 mM) and continued protein synthesis. Cobalt stimulation resulted in alkaline phosphate production being a major portion of total protein synthesized during late-logarithmic and early-stationary-phase culture growth. Cells cultured in the defined medium minus cobalt, or purified enzyme partially inactivated with a chelating agent, showed a 2.5-fold increase in activity when assayed in the presence of cobalt. Atomic spectral analysis indicated the presence of 3.65 +/- 0.45 g-atoms of cobalt associated with each mole of purified active alkaline phosphatase. A biochemical localization as a function of culture age in this medium showed that alkaline phosphatase was associated with the cytoplasmic membrane and was also found as a soluble enzyme in the periplasmic region and secreted into the growth medium.
Full text
PDF![926](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/028e/217200/9985cb498bd2/jbacter00273-0262.png)
![927](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/028e/217200/adb3c428b3ed/jbacter00273-0263.png)
![928](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/028e/217200/a33bf403d33c/jbacter00273-0264.png)
![929](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/028e/217200/80c394bdfa8d/jbacter00273-0265.png)
![930](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/028e/217200/195613cce0ba/jbacter00273-0266.png)
![931](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/028e/217200/c10812898f8c/jbacter00273-0267.png)
![932](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/028e/217200/a606fa04c69a/jbacter00273-0268.png)
![933](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/028e/217200/3f073c689949/jbacter00273-0269.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aono H., Otsuji N. Genetic mapping of regulator gene phoS for alkaline phosphatase in Escherichia coli. J Bacteriol. 1968 Mar;95(3):1182–1183. doi: 10.1128/jb.95.3.1182-1183.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bracha M., Yagil E. Genetic mapping of the phoR regulator gene of alkaline phosphatase in Escherichia coli. J Gen Microbiol. 1969 Nov;59(1):77–81. doi: 10.1099/00221287-59-1-77. [DOI] [PubMed] [Google Scholar]
- GAREN A., ECHOLS H. Genetic control of induction of alkaline phosphatase synthesis in E. coli. Proc Natl Acad Sci U S A. 1962 Aug;48:1398–1402. doi: 10.1073/pnas.48.8.1398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GAREN A., ECHOLS H. Properties of two regulating genes for alkaline phosphatase. J Bacteriol. 1962 Feb;83:297–300. doi: 10.1128/jb.83.2.297-300.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghosh R., Ghosh A., Ghosh B. K. Properties of the membrane-bound alkaline phosphatase from glucose- and lactate-grown cells of Bacillus subtilis SB 15. J Biol Chem. 1977 Oct 10;252(19):6813–6822. [PubMed] [Google Scholar]
- Glynn J. A., Schaffel S. D., McNicholas J. M., Hulett F. M. Biochemical localization of the alkaline phosphatase of Bacillus licheniformis as a function of culture age. J Bacteriol. 1977 Feb;129(2):1010–1019. doi: 10.1128/jb.129.2.1010-1019.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hulett-Cowling F. M., Campbell L. L. Molecular weight and subunits of the alkaline phosphatase of Bacillus licheniformis. Biochemistry. 1971 Apr 13;10(8):1371–1376. doi: 10.1021/bi00784a015. [DOI] [PubMed] [Google Scholar]
- Hulett-Cowling F. M., Campbell L. L. Purification and properties of an alkaline phosphatase of Bacillus licheniformis. Biochemistry. 1971 Apr 13;10(8):1364–1371. doi: 10.1021/bi00784a014. [DOI] [PubMed] [Google Scholar]
- Hydrean C., Ghosh A., Nallin M., Ghosh B. K. Interrelationship of carbohydrate metabolism and alkaline phosphatase synthesis in Bacillus licheniformis 749/c. J Biol Chem. 1977 Oct 10;252(19):6806–6812. [PubMed] [Google Scholar]
- Lazdunski C., Petitclerc C., Lazdunski M. Structure-function relationships for some metalloalkaline phosphatases of E. coli. Eur J Biochem. 1969 Apr;8(4):510–517. doi: 10.1111/j.1432-1033.1969.tb00556.x. [DOI] [PubMed] [Google Scholar]
- McNicholas J. M., Hulett F. M. Electron microscope histochemical localization of alkaline phosphatase(s) in Bacillus licheniformis. J Bacteriol. 1977 Jan;129(1):501–515. doi: 10.1128/jb.129.1.501-515.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miki T., Minami Z., Ikeda Y. The genetics of alkaline phosphatase formation in Bacillus subtilis. Genetics. 1965 Nov;52(5):1093–1100. doi: 10.1093/genetics/52.5.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris H., Schlesinger M. J., Bracha M., Yagil E. Pleiotropic effects of mutations involved in the regulation of Escherichia coli K-12 alkaline phosphatase. J Bacteriol. 1974 Aug;119(2):583–592. doi: 10.1128/jb.119.2.583-592.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakon R. Free metal ion depletion by "Good's" buffers. I. N-(2-acetamido)iminodiacetic acid 1:1 complexes with calcium(ii). magnesium(II), zinc(II), manganese(II), cobalt(II), nickel(II), and copper(II). Anal Biochem. 1979 Jun;95(2):527–532. doi: 10.1016/0003-2697(79)90767-x. [DOI] [PubMed] [Google Scholar]
- Norne J. E., Csopak H., Lindman B. 35Cl nuclear magnetic resonance study of zinc and phosphate binding of E. coli alkaline phosphatase. Arch Biochem Biophys. 1974 Jun;162(2):552–559. doi: 10.1016/0003-9861(74)90215-x. [DOI] [PubMed] [Google Scholar]
- Norne J. E., Szajn H., Csopak H., Reimarsson P., Lindman B. The relation between activity and zinc and chloride binding of Escherichia coli alkaline phosphatase. Arch Biochem Biophys. 1979 Sep;196(2):552–556. doi: 10.1016/0003-9861(79)90307-2. [DOI] [PubMed] [Google Scholar]
- Piggot P. J., Sklar M. D., Gorini L. Ribosomal alterations controlling alkaline phosphatase isozymes in Escherichia coli. J Bacteriol. 1972 Apr;110(1):291–299. doi: 10.1128/jb.110.1.291-299.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strickland J. E., Miller O. N. Inhibition of glycerol dehydrogenase from Aerobacter aerogenes by dihydroxyacetone, high ionic strength, and monovalent cations. Biochim Biophys Acta. 1968 Jun 4;159(2):221–225. doi: 10.1016/0005-2744(68)90070-3. [DOI] [PubMed] [Google Scholar]
- Szajn H., Csopak H. Metal ion-induced conformational changes in Escherichia coli alkaline phosphatase. Biochim Biophys Acta. 1977 Jan 11;480(1):143–153. doi: 10.1016/0005-2744(77)90329-1. [DOI] [PubMed] [Google Scholar]
- TORRIANI A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta. 1960 Mar 11;38:460–469. doi: 10.1016/0006-3002(60)91281-6. [DOI] [PubMed] [Google Scholar]
- Wilkins A. S. Physiological factors in the regulation of alkaline phosphatase synthesis in Escherichia coli. J Bacteriol. 1972 May;110(2):616–623. doi: 10.1128/jb.110.2.616-623.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willsky G. R., Bennett R. L., Malamy M. H. Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation. J Bacteriol. 1973 Feb;113(2):529–539. doi: 10.1128/jb.113.2.529-539.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshizumi F. K., Coleman J. E. Metalloalkaline phosphatases from Bacillus subtilis: physicochemical and enzymatic properties. Arch Biochem Biophys. 1974 Jan;160(1):255–268. doi: 10.1016/s0003-9861(74)80032-9. [DOI] [PubMed] [Google Scholar]
- Zukin R. S., Hollis D. P. Role of metal ions in Escherichia coli alkaline phosphatase. A study of the metal-water interaction by nuclear relaxation rate measurements on water protons. J Biol Chem. 1975 Feb 10;250(3):835–842. [PubMed] [Google Scholar]