Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Feb;145(2):980–983. doi: 10.1128/jb.145.2.980-983.1981

Transformation of Bacillus thuringiensis protoplasts by plasmid deoxyribonucleic acid.

P A Martin, J R Lohr, D H Dean
PMCID: PMC217207  PMID: 7462165

Abstract

A method has been developed to transform plasmid deoxyribonucleic acid into protoplasts of the insect pathogen Bacillus thuringiensis. Protoplasts were formed by treatment of cells with lysozyme. The efficiency of formation of protoplasts was affected by the strain, the media, and the cell density. Deoxyribonucleic acid uptake was induced by polyethylene glycol. Deoxyribonucleic acid from the Staphylococcus aureus plasmid pC194 was used for transformation. Although this plasmid could not be isolated as a stable extrachromosomal element, its chloramphenicol resistance was transferred to the recipient protoplasts. This was confirmed by assay for the enzyme chloramphenicol acetyltransferase, which confers resistance to chloramphenicol. This suggested that pC194 acts as an insertion element in B. thuringiensis.

Full text

PDF
981

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANGUS T. A. Extraction, purification, and properties of Bacillus sotto toxin. Can J Microbiol. 1956 Jun;2(4):416–426. doi: 10.1139/m56-049. [DOI] [PubMed] [Google Scholar]
  2. Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benzinger R., Kleber I., Huskey R. Transfection of Escherichia coli spheroplasts. I. General facilitation of double-stranded deoxyribonucleic acid infectivity by protamine sulfate. J Virol. 1971 May;7(5):646–650. doi: 10.1128/jvi.7.5.646-650.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown B. J., Carlton B. C. Plasmid-mediated transformation in Bacillus megaterium. J Bacteriol. 1980 May;142(2):508–512. doi: 10.1128/jb.142.2.508-512.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Case M. E., Schweizer M., Kushner S. R., Giles N. H. Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5259–5263. doi: 10.1073/pnas.76.10.5259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang S., Cohen S. N. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet. 1979 Jan 5;168(1):111–115. doi: 10.1007/BF00267940. [DOI] [PubMed] [Google Scholar]
  7. Clewell D. B., Helinski D. R. Supercoiled circular DNA-protein complex in Escherichia coli: purification and induced conversion to an opern circular DNA form. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1159–1166. doi: 10.1073/pnas.62.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ehrlich S. D. Replication and expression of plasmids from Staphylococcus aureus in Bacillus subtilis. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1680–1682. doi: 10.1073/pnas.74.4.1680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gabor M. H., Hotchkiss R. D. Parameters governing bacterial regeneration and genetic recombination after fusion of Bacillus subtilis protoplasts. J Bacteriol. 1979 Mar;137(3):1346–1353. doi: 10.1128/jb.137.3.1346-1353.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hinnen A., Hicks J. B., Fink G. R. Transformation of yeast. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1929–1933. doi: 10.1073/pnas.75.4.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Iordanescu S., Surdeanu M., Della Latta P., Novick R. Incompatibility and molecular relationships between small Staphylococcal plasmids carrying the same resistance marker. Plasmid. 1978 Sep;1(4):468–479. doi: 10.1016/0147-619x(78)90005-7. [DOI] [PubMed] [Google Scholar]
  12. Iordănescu S. Recombinant plasmid obtained from two different, compatible staphylococcal plasmids. J Bacteriol. 1975 Nov;124(2):597–601. doi: 10.1128/jb.124.2.597-601.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Norris J. R. Symposium on bacterial spores: XVI. Sporeformers as insecticides. J Appl Bacteriol. 1970 Mar;33(1):192–206. doi: 10.1111/j.1365-2672.1970.tb05244.x. [DOI] [PubMed] [Google Scholar]
  14. Perlak F. J., Mendelsohn C. L., Thorne C. B. Converting bacteriophage for sporulation and crystal formation in Bacillus thuringiensis. J Bacteriol. 1979 Nov;140(2):699–706. doi: 10.1128/jb.140.2.699-706.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shaw W. V. Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol. 1975;43:737–755. doi: 10.1016/0076-6879(75)43141-x. [DOI] [PubMed] [Google Scholar]
  16. Smucker R. A., Pfister R. M. Liquid nitrogen cryo-impacting: a new concept for cell disruption. Appl Microbiol. 1975 Sep;30(3):445–449. doi: 10.1128/am.30.3.445-449.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stahly D. P., Dingman D. W., Bulla L. A., Jr, Aronson A. I. Possible origin and function of the parasporal crystal in Bacillus thuringiensis. Biochem Biophys Res Commun. 1978 Oct 16;84(3):581–588. doi: 10.1016/0006-291x(78)90745-3. [DOI] [PubMed] [Google Scholar]
  18. Thorne C. B. Transduction in Bacillus thuringiensis. Appl Environ Microbiol. 1978 Jun;35(6):1109–1115. doi: 10.1128/aem.35.6.1109-1115.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. de Barjac H., Bonnefoi A. A classification of strains of Bacillus thuringiensis Berliner with a key to their differentiation. J Invertebr Pathol. 1968 Sep;11(3):335–347. doi: 10.1016/0022-2011(68)90182-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES