Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Nov;110(3):1049–1054. doi: 10.1111/j.1476-5381.1993.tb13919.x

Differential effects of K+ channel blockers on antinociception induced by alpha 2-adrenoceptor, GABAB and kappa-opioid receptor agonists.

M Ocaña 1, J M Baeyens 1
PMCID: PMC2175792  PMID: 7905339

Abstract

1. The effects of several K+ channel blockers (sulphonylureas, 4-aminopyridine and tetraethylammonium) on the antinociception induced by clonidine, baclofen and U50,488H were evaluated by use of a tail flick test in mice. 2. Clonidine (0.125-2 mg kg-1, s.c.) induced a dose-dependent antinociceptive effect. The ATP-dependent K+ (KATP) channel blocker gliquidone (4-8 micrograms/mouse, i.c.v.) produced a dose-dependent displacement to the right of the clonidine dose-response line, but neither 4-aminopyridine (4-AP) (25-250 ng/mouse, i.c.v.) nor tetraethylammonium (TEA) (10-20 micrograms/mouse, i.c.v.) significantly modified clonidine-induced antinociception. 3. The order of potency of sulphonylureas in antagonizing clonidine-induced antinociception was gliquidone > glipizide > glibenclamide > tolbutamide, which is the same order of potency as these drugs block KATP channels in neurones of the CNS. 4. Baclofen (2-16 mg kg-1, s.c.) also induced a dose-dependent antinociceptive effect. Both 4-AP (2.5-25 ng/mouse, i.c.v.) and TEA (10-20 micrograms/mouse, i.c.v.) dose-dependently antagonized baclofen antinociception, producing a displacement to the right of the baclofen dose-response line. However, gliquidone (8-16 micrograms/mouse, i.c.v.) did not significantly modify the baclofen effect. 5. None of the K+ channel blockers tested (gliquidone, 8-16 micrograms/mouse; 4-AP, 25-250 ng/mouse and TEA, 10-20 micrograms/mouse, i.c.v.), significantly modified the antinociception induced by U50,488H (8 mg kg-1, s.c.). 6. These results suggest that the opening of K+ channels is involved in the antinociceptive effect of alpha 2 and GABAB, but not kappa-opioid, receptor agonists.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1053

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aghajanian G. K., Wang Y. Y. Common alpha 2- and opiate effector mechanisms in the locus coeruleus: intracellular studies in brain slices. Neuropharmacology. 1987 Jul;26(7B):793–799. doi: 10.1016/0028-3908(87)90054-2. [DOI] [PubMed] [Google Scholar]
  2. Amoroso S., Schmid-Antomarchi H., Fosset M., Lazdunski M. Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels. Science. 1990 Feb 16;247(4944):852–854. doi: 10.1126/science.2305257. [DOI] [PubMed] [Google Scholar]
  3. Andrade R., Aghajanian G. K. Opiate- and alpha 2-adrenoceptor-induced hyperpolarizations of locus ceruleus neurons in brain slices: reversal by cyclic adenosine 3':5'-monophosphate analogues. J Neurosci. 1985 Sep;5(9):2359–2364. doi: 10.1523/JNEUROSCI.05-09-02359.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aronson J. K. Potassium channels in nervous tissue. Biochem Pharmacol. 1992 Jan 9;43(1):11–14. doi: 10.1016/0006-2952(92)90653-z. [DOI] [PubMed] [Google Scholar]
  5. Cherubini E., North R. A. Mu and kappa opioids inhibit transmitter release by different mechanisms. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1860–1863. doi: 10.1073/pnas.82.6.1860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Christie M. J., North R. A. Agonists at mu-opioid, M2-muscarinic and GABAB-receptors increase the same potassium conductance in rat lateral parabrachial neurones. Br J Pharmacol. 1988 Nov;95(3):896–902. doi: 10.1111/j.1476-5381.1988.tb11719.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Christie M. J., Williams J. T., North R. A. Cellular mechanisms of opioid tolerance: studies in single brain neurons. Mol Pharmacol. 1987 Nov;32(5):633–638. [PubMed] [Google Scholar]
  8. Clark J. A., Pasternak G. W. U50,488: a kappa-selective agent with poor affinity for mu1 opiate binding sites. Neuropharmacology. 1988 Mar;27(3):331–332. doi: 10.1016/0028-3908(88)90052-4. [DOI] [PubMed] [Google Scholar]
  9. Fornai F., Blandizzi C., del Tacca M. Central alpha-2 adrenoceptors regulate central and peripheral functions. Pharmacol Res. 1990 Sep-Oct;22(5):541–554. doi: 10.1016/s1043-6618(05)80046-5. [DOI] [PubMed] [Google Scholar]
  10. Inoue M., Matsuo T., Ogata N. Baclofen activates voltage-dependent and 4-aminopyridine sensitive K+ conductance in guinea-pig hippocampal pyramidal cells maintained in vitro. Br J Pharmacol. 1985 Apr;84(4):833–841. doi: 10.1111/j.1476-5381.1985.tb17377.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lacey M. G., Mercuri N. B., North R. A. On the potassium conductance increase activated by GABAB and dopamine D2 receptors in rat substantia nigra neurones. J Physiol. 1988 Jul;401:437–453. doi: 10.1113/jphysiol.1988.sp017171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mattia A., Farmer S. C., Takemori A. E., Sultana M., Portoghese P. S., Mosberg H. I., Bowen W. D., Porreca F. Spinal opioid delta antinociception in the mouse: mediation by a 5'-NTII-sensitive delta receptor subtype. J Pharmacol Exp Ther. 1992 Feb;260(2):518–525. [PubMed] [Google Scholar]
  13. Morita K., North R. A. Clonidine activates membrane potassium conductance in myenteric neurones. Br J Pharmacol. 1981 Oct;74(2):419–428. doi: 10.1111/j.1476-5381.1981.tb09987.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Narita M., Suzuki T., Misawa M., Nagase H., Nabeshima A., Ashizawa T., Ozawa H., Saito T., Takahata N. Role of central ATP-sensitive potassium channels in the analgesic effect and spinal noradrenaline turnover-enhancing effect of intracerebroventricularly injected morphine in mice. Brain Res. 1992 Nov 20;596(1-2):209–214. doi: 10.1016/0006-8993(92)91549-t. [DOI] [PubMed] [Google Scholar]
  15. North R. A. Twelfth Gaddum memorial lecture. Drug receptors and the inhibition of nerve cells. Br J Pharmacol. 1989 Sep;98(1):13–28. doi: 10.1111/j.1476-5381.1989.tb16855.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. North R. A., Williams J. T. On the potassium conductance increased by opioids in rat locus coeruleus neurones. J Physiol. 1985 Jul;364:265–280. doi: 10.1113/jphysiol.1985.sp015743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. North R. A., Yoshimura M. The actions of noradrenaline on neurones of the rat substantia gelatinosa in vitro. J Physiol. 1984 Apr;349:43–55. doi: 10.1113/jphysiol.1984.sp015141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ocaña M., Baeyens J. M. Analgesic effects of centrally administered aminoglycoside antibiotics in mice. Neurosci Lett. 1991 May 13;126(1):67–70. doi: 10.1016/0304-3940(91)90373-2. [DOI] [PubMed] [Google Scholar]
  19. Ocaña M., Del Pozo E., Baeyens J. M. ATP-dependent K+ channel blockers antagonize morphine- but not U-504,88H-induced antinociception. Eur J Pharmacol. 1993 Jan 12;230(2):203–207. doi: 10.1016/0014-2999(93)90803-p. [DOI] [PubMed] [Google Scholar]
  20. Ocaña M., Del Pozo E., Barrios M., Robles L. I., Baeyens J. M. An ATP-dependent potassium channel blocker antagonizes morphine analgesia. Eur J Pharmacol. 1990 Sep 21;186(2-3):377–378. doi: 10.1016/0014-2999(90)90466-j. [DOI] [PubMed] [Google Scholar]
  21. Ogata N., Inoue M., Matsuo T. Contrasting properties of K+ conductances induced by baclofen and gamma-aminobutyric acid in slices of the guinea pig hippocampus. Synapse. 1987;1(1):62–69. doi: 10.1002/syn.890010109. [DOI] [PubMed] [Google Scholar]
  22. Porreca F., Mosberg H. I., Hurst R., Hruby V. J., Burks T. F. Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse. J Pharmacol Exp Ther. 1984 Aug;230(2):341–348. [PubMed] [Google Scholar]
  23. Robles I., Barrios M., Baeyens J. M. Centrally administered aminoglycoside antibiotics antagonize naloxone-precipitated withdrawal in mice acutely dependent on morphine. Neurosci Lett. 1992 Oct 12;145(2):189–192. doi: 10.1016/0304-3940(92)90019-4. [DOI] [PubMed] [Google Scholar]
  24. Saint D. A., Thomas T., Gage P. W. GABAB agonists modulate a transient potassium current in cultured mammalian hippocampal neurons. Neurosci Lett. 1990 Oct 2;118(1):9–13. doi: 10.1016/0304-3940(90)90236-3. [DOI] [PubMed] [Google Scholar]
  25. Sawynok J. GABAergic mechanisms of analgesia: an update. Pharmacol Biochem Behav. 1987 Feb;26(2):463–474. doi: 10.1016/0091-3057(87)90148-1. [DOI] [PubMed] [Google Scholar]
  26. Schmid-Antomarchi H., Amoroso S., Fosset M., Lazdunski M. K+ channel openers activate brain sulfonylurea-sensitive K+ channels and block neurosecretion. Proc Natl Acad Sci U S A. 1990 May;87(9):3489–3492. doi: 10.1073/pnas.87.9.3489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stevens D. R., Gallagher J. P., Shinnick-Gallagher P. Further studies on the action of baclofen on neurons of the dorsolateral septal nucleus of the rat, in vitro. Brain Res. 1985 Dec 9;358(1-2):360–363. doi: 10.1016/0006-8993(85)90984-9. [DOI] [PubMed] [Google Scholar]
  28. Tatsumi H., Costa M., Schimerlik M., North R. A. Potassium conductance increased by noradrenaline, opioids, somatostatin, and G-proteins: whole-cell recording from guinea pig submucous neurons. J Neurosci. 1990 May;10(5):1675–1682. doi: 10.1523/JNEUROSCI.10-05-01675.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vergoni A. V., Scarano A., Bertolini A. Pinacidil potentiates morphine analgesia. Life Sci. 1992;50(16):PL135–PL138. doi: 10.1016/0024-3205(92)90467-4. [DOI] [PubMed] [Google Scholar]
  30. Vonvoigtlander P. F., Lahti R. A., Ludens J. H. U-50,488: a selective and structurally novel non-Mu (kappa) opioid agonist. J Pharmacol Exp Ther. 1983 Jan;224(1):7–12. [PubMed] [Google Scholar]
  31. Werz M. A., Macdonald R. L. Dynorphin reduces calcium-dependent action potential duration by decreasing voltage-dependent calcium conductance. Neurosci Lett. 1984 May 4;46(2):185–190. doi: 10.1016/0304-3940(84)90439-7. [DOI] [PubMed] [Google Scholar]
  32. Wild K. D., Vanderah T., Mosberg H. I., Porreca F. Opioid delta receptor subtypes are associated with different potassium channels. Eur J Pharmacol. 1991 Jan 25;193(1):135–136. doi: 10.1016/0014-2999(91)90215-c. [DOI] [PubMed] [Google Scholar]
  33. Xiang J. Z., Adamson P., Brammer M. J., Campbell I. C. The kappa-opiate agonist U50488H decreases the entry of 45Ca into rat cortical synaptosomes by inhibiting N- but not L-type calcium channels. Neuropharmacology. 1990 May;29(5):439–444. doi: 10.1016/0028-3908(90)90165-n. [DOI] [PubMed] [Google Scholar]
  34. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983 Jun;16(2):109–110. doi: 10.1016/0304-3959(83)90201-4. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES