Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1983 Aug;155(2):628–633. doi: 10.1128/jb.155.2.628-633.1983

14C-labeled metabolites in heterocysts and vegetative cells of Anabaena cylindrica filaments and their presumptive function as transport vehicles of organic carbon and nitrogen.

F Jüttner
PMCID: PMC217732  PMID: 6135688

Abstract

To investigate the transport of primary metabolites in Anabaena cylindrica from vegetative cells into heterocysts, intact filaments were labeled with the heterocysts were separated from the vegetative cells after different time intervals, and the labeling patterns were determined. After a 20-s fixation time, a high percentage of labeling of alanine, glutamate and glutamine, and, to a lesser extent, glucose 6-phosphate was found in heterocysts as compared with whole filaments. The results can be explained if transport of alanine, glutamate, and sugars from vegetative cells into heterocysts is assumed. Alanine can serve as a precursor for reducing equivalents if it is oxidized to glutamine which flows back to the vegetative cells. This idea is supported by an experiment in which exogenous alanine is readily converted by isolated heterocysts to glutamate and glutamine under a N2-H2 atmosphere. The incorporation of [14C]carbonate in isolated heterocysts demonstrated the absence of the reductive pentose phosphate pathway; however, it revealed marked activity of an acid fixation reaction.

Full text

PDF
633

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen M. B., Arnon D. I. Studies on Nitrogen-Fixing Blue-Green Algae. I. Growth and Nitrogen Fixation by Anabaena Cylindrica Lemm. Plant Physiol. 1955 Jul;30(4):366–372. doi: 10.1104/pp.30.4.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cardemil L., Wolk C. P. Isolated heterocysts of Anabaena variabilis synthesize envelope polysaccharide. Biochim Biophys Acta. 1981 May 5;674(2):265–276. doi: 10.1016/0304-4165(81)90384-6. [DOI] [PubMed] [Google Scholar]
  3. Fay P., Stewart W. D., Walsby A. E., Fogg G. E. Is the heterocyst the site of nitrogen fixation in blue-green algae? Nature. 1968 Nov 23;220(5169):810–812. doi: 10.1038/220810b0. [DOI] [PubMed] [Google Scholar]
  4. Gupta M., Carr N. G. Detection of glutamate synthase in heterocysts of Anabaena sp. strain 7120. J Bacteriol. 1981 Dec;148(3):980–982. doi: 10.1128/jb.148.3.980-982.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Haury J. F., Spiller H. Fructose uptake and influence on growth of and nitrogen fixation by Anabaena variabilis. J Bacteriol. 1981 Jul;147(1):227–235. doi: 10.1128/jb.147.1.227-235.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Isogai Y., Iida A., Mochizuki K., Okabe H., Yokose T. [Therapeutic and pathophysiologic consideration on diabetic microangiopathy from the view point of the blood rheology (author's transl)]. Horumon To Rinsho. 1980 Feb;28(2):149–154. [PubMed] [Google Scholar]
  7. Lex M., Carr N. G. The metabolism of glucose by heterocysts and vegetative cells of Anabaena cylindrica. Arch Microbiol. 1974;101(2):161–167. doi: 10.1007/BF00455936. [DOI] [PubMed] [Google Scholar]
  8. Neuer G., Bothe H. The pyruvate: ferredoxin oxidoreductase in heterocysts of the cyanobacterium Anabaena cylindrica. Biochim Biophys Acta. 1982 Jun 16;716(3):358–365. doi: 10.1016/0304-4165(82)90028-9. [DOI] [PubMed] [Google Scholar]
  9. Rowell P., Stewart W. D. Alanine dehydrogenase of the N2-fixing blue-green alga, Anabaena cylindrica. Arch Microbiol. 1975 Sep;107(2):115–124. doi: 10.1007/BF00446830. [DOI] [PubMed] [Google Scholar]
  10. Tel-Or E., Stewart W. D. Photosynthetic electron transport, ATP synthesis and nitrogenase activity in isolated heterocysts of Anabaena cylindrica. Biochim Biophys Acta. 1976 Feb 16;423(2):189–195. doi: 10.1016/0005-2728(76)90177-8. [DOI] [PubMed] [Google Scholar]
  11. Thomas J., Meeks J. C., Wolk C. P., Shaffer P. W., Austin S. M. Formation of glutamine from [13n]ammonia, [13n]dinitrogen, and [14C]glutamate by heterocysts isolated from Anabaena cylindrica. J Bacteriol. 1977 Mar;129(3):1545–1555. doi: 10.1128/jb.129.3.1545-1555.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wilcox M., Mitchison G. J., Smith R. J. Pattern formation in the blue-green alga Anabaena. II. Controlled proheterocyst regression. J Cell Sci. 1973 Nov;13(3):637–649. doi: 10.1242/jcs.13.3.637. [DOI] [PubMed] [Google Scholar]
  13. Winkenbach F., Wolk C. P. Activities of enzymes of the oxidative and the reductive pentose phosphate pathways in heterocysts of a blue-green alga. Plant Physiol. 1973 Nov;52(5):480–483. doi: 10.1104/pp.52.5.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wolk C. P. Movement of carbon from vegetative cells to heterocysts in Anabaena cylindrica. J Bacteriol. 1968 Dec;96(6):2138–2143. doi: 10.1128/jb.96.6.2138-2143.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wolk C. P., Thomas J., Shaffer P. W., Austin S. M., Galonsky A. Pathway of nitrogen metabolism after fixation of 13N-labeled nitrogen gas by the cyanobacterium, Anabaena cylindrica. J Biol Chem. 1976 Aug 25;251(16):5027–5034. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES