Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 May;138(2):446–452. doi: 10.1128/jb.138.2.446-452.1979

Hydrogen formation in nearly stoichiometric amounts from glucose by a Rhodopseudomonas sphaeroides mutant.

B A Macler, R A Pelroy, J A Bassham
PMCID: PMC218197  PMID: 312286

Abstract

Rhodopseudomonas sphaeroides produces molecular H2 and CO2 from reduced organic compounds which serve as electron sources and from light which provides energy in the form of adenosine 5'-triphosphate. This process is mediated by a nitrogenase enzyme. A mutant has been found that, unlike the wild type, will quantitatively convert glucose to H2 and CO2. Techniques for isolating other strains capable of utilizing other unusual electron sources are presented. Metabolism of glucose by the wild-type strain leads to an accumulation of gluconate. The isolated mutant strain does not appear to accumulate gluconate.

Full text

PDF
448

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L., Fuller R. C. Photosynthesis in Rhodospirillum rubrum. 3. Metabolic control of reductive pentose phosphate and tricarboxylic acid cycle enzymes. Plant Physiol. 1967 Apr;42(4):497–509. doi: 10.1104/pp.42.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
  3. EISENBERG M. A. The tricarboxylic acid in Rhodospirillum rubrum. J Biol Chem. 1953 Aug;203(2):815–836. [PubMed] [Google Scholar]
  4. GEST H. Metabolic patterns in photosynthetic bacteria. Bacteriol Rev. 1951 Dec;15(4):183–210. doi: 10.1128/br.15.4.183-210.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GEST H., ORMEROD J. G., ORMEROD K. S. Photometabolism of Rhodospirillum rubrum: light-dependent dissimilation of organic compounds to carbon dioxide and molecular hydrogen by an anaerobic citric acid cycle. Arch Biochem Biophys. 1962 Apr;97:21–33. doi: 10.1016/0003-9861(62)90039-5. [DOI] [PubMed] [Google Scholar]
  6. Gest H., Kamen M. D. Photoproduction of Molecular Hydrogen by Rhodospirillum rubrum. Science. 1949 Jun 3;109(2840):558–559. doi: 10.1126/science.109.2840.558. [DOI] [PubMed] [Google Scholar]
  7. Hillmer P., Gest H. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells. J Bacteriol. 1977 Feb;129(2):732–739. doi: 10.1128/jb.129.2.732-739.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hwang J. C., Chen C. H., Burris R. H. Inhibition of nitrogenase-catalyzed reductions. Biochim Biophys Acta. 1973 Jan 18;292(1):256–270. doi: 10.1016/0005-2728(73)90270-3. [DOI] [PubMed] [Google Scholar]
  9. Kanazawa T., Kirk M. R., Bassham J. A. Regulatory effects of ammonia on carbon metabolism in photosynthesizing Chlorella pyrenoidosa. Biochim Biophys Acta. 1970 Jun 30;205(3):401–408. doi: 10.1016/0005-2728(70)90106-4. [DOI] [PubMed] [Google Scholar]
  10. Koch B., Evans H. J. Reduction of acetylene to ethylene by soybean root nodules. Plant Physiol. 1966 Dec;41(10):1748–1750. doi: 10.1104/pp.41.10.1748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. MCNARY J. E., BURRIS R. H. Energy requirements for nitrogen fixation by cell-free preparations from Clostridium pasteurianum. J Bacteriol. 1962 Sep;84:598–599. doi: 10.1128/jb.84.3.598-599.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. ORMEROD J. G., ORMEROD K. S., GEST H. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch Biochem Biophys. 1961 Sep;94:449–463. doi: 10.1016/0003-9861(61)90073-x. [DOI] [PubMed] [Google Scholar]
  14. SZYMONA M., DOUDOROFF M. Carbohydrate metabolism in Rhodopseudomonas sphreoides. J Gen Microbiol. 1960 Feb;22:167–183. doi: 10.1099/00221287-22-1-167. [DOI] [PubMed] [Google Scholar]
  15. Watt G. D., Bulen W. A., Burns A., Hadfield K. L. Stoichiometry, ATP/2e values, and energy requirements for reactions catalyzed by nitrogenase from Azotobacter vinelandii. Biochemistry. 1975 Sep 23;14(19):4266–4272. doi: 10.1021/bi00690a019. [DOI] [PubMed] [Google Scholar]
  16. Yagi T. Solubilization, purification and properties of particulate hydrogenase from Desulfovibrio vulgaris. J Biochem. 1970 Nov;68(5):649–657. doi: 10.1093/oxfordjournals.jbchem.a129398. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES