Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 May;138(2):475–485. doi: 10.1128/jb.138.2.475-485.1979

Ionizing radiation damage to the folded chromosome of Escherichia coli K-12: sedimentation properties of irradiated nucleoids and chromosomal deoxyribonucleic acid.

K M Ulmer, R F Gomez, A J Sinskey
PMCID: PMC218201  PMID: 374388

Abstract

The structures of the membrane-free nucleoid of Escherichia coli K-12 and of unfolded chromosomal deoxyribonucleic acid (DNA) were investigated by low-speed sedimentation on neutral sucrose gradients after irradiation with 60Co gamma rays. Irradiation both in vivo and in vitro was used as a molecular probe of the constraints on DNA packaging in the bacterial chromosome. The number of domains of supercoiling was estimated to be approximately 180 per genome equivalent of DNA, based on measurements of relaxation caused by single-strand break formation in folded chromosomes gamma irradiated in vivo and in vitro. Similar estimates based on the target size of ribonucleic acid molecules responsible for maintaining the compact packaging of the nucleoid predicted negligible unfolding due to the formation of ribonucleic acid single-strand breaks at doses of up to 10 krad; this was born out by experimental measurements. Unfolding of the nucleoid in vitro by limit digestion with ribonuclease or by heating at 70 degrees C resulted in DNA complexes with sedimentation coefficients of 1,030 +/- 59S and 625 +/- 15S, respectively. The difference in these rates was apparently due to more complete deproteinization and thus less mass in the heated material. These structures are believed to represent intact, replicating genomes in the form of complex-theta structures containing two to three genome equivalents of DNA. The rate of formation of double-strand breaks was determined from molecular weight measurements of thermally unfolded chromosomal DNA gamma irradiated in vitro. Break formation was linear with doses up to 10 krad and occurred at a rate of 0.27 double-strand break per krad per genome equivalent of DNA (1,080 eV/double-strand break). The influence of possible nonlinear DNA conformations on these values is discussed.

Full text

PDF
482

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURGI E., HERSHEY A. D. Sedimentation rate as a measure of molecular weight of DNA. Biophys J. 1963 Jul;3:309–321. doi: 10.1016/s0006-3495(63)86823-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bloomfield V. A. Sedimentation coefficients of replicating and crosslinked DNA. Biopolymers. 1968;6(3):285–292. doi: 10.1002/bip.1968.360060303. [DOI] [PubMed] [Google Scholar]
  3. Bonura T., Smith K. C., Kaplan H. S. Enzymatic induction of DNA double-strand breaks in gamma-irradiated Escherichia coli K-12. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4265–4269. doi: 10.1073/pnas.72.11.4265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bonura T., Smith K. C. Letter: The involvement of indirect effects in cell-killing and DNA double-strand breakage in gamma-irradiated Escherichia coli K-12. Int J Radiat Biol Relat Stud Phys Chem Med. 1976 Mar;29(3):293–296. doi: 10.1080/09553007614550331. [DOI] [PubMed] [Google Scholar]
  5. Bonura T., Town C. D., Smith K. C., Kaplan H. S. The influence of oxygen on the yield of DNA double-strand breaks in x-irradiated Escherichia coli K-12. Radiat Res. 1975 Sep;63(3):567–577. [PubMed] [Google Scholar]
  6. Burrell A. D., Feldschreiber P., Dean C. J. DNA-membrane association and the repair of double breaks in x-irradiated Micrococcus radiodurans. Biochim Biophys Acta. 1971 Sep 30;247(1):38–53. doi: 10.1016/0005-2787(71)90805-7. [DOI] [PubMed] [Google Scholar]
  7. CUMMINGS D. J. SEDIMENTATION AND BIOLOGICAL PROPERTIES OF T-PHAGES OF ESCHERICHIA COLI. Virology. 1964 Jul;23:408–418. doi: 10.1016/0042-6822(64)90264-8. [DOI] [PubMed] [Google Scholar]
  8. Clark R. W., Lange C. S. The sucrose gradient and native DNA S20,W, an examination of measurement problems. Biochim Biophys Acta. 1976 Dec 13;454(3):567–577. doi: 10.1016/0005-2787(76)90282-3. [DOI] [PubMed] [Google Scholar]
  9. Conley M. P., Wood W. B. Bacteriophage T4 whiskers: a rudimentary environment-sensing device. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3701–3705. doi: 10.1073/pnas.72.9.3701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cooper S., Helmstetter C. E. Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol. 1968 Feb 14;31(3):519–540. doi: 10.1016/0022-2836(68)90425-7. [DOI] [PubMed] [Google Scholar]
  11. Crine P., Verly W. G. Determination of single-strand breaks in DNA using neutral sucrose gradients. Anal Biochem. 1976 Oct;75(2):583–595. doi: 10.1016/0003-2697(76)90113-5. [DOI] [PubMed] [Google Scholar]
  12. Davies R., Sinskey A. J. Radiation-resistant mutants of Salmonella typhimurium LT2: development and characterization. J Bacteriol. 1973 Jan;113(1):133–144. doi: 10.1128/jb.113.1.133-144.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Drlica K., Worcel A. Conformational transitions in the Escherichia coli chromosome: analysis by viscometry and sedimentation. J Mol Biol. 1975 Oct 25;98(2):393–411. doi: 10.1016/s0022-2836(75)80126-4. [DOI] [PubMed] [Google Scholar]
  14. Emmerson P. T. Recombination deficient mutants of Escherichia coli K12 that map between thy A and argA. Genetics. 1968 Sep;60(1):19–30. doi: 10.1093/genetics/60.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Freifelder D. Molecular weights of coliphages and coliphage DNA. IV. Molecular weights of DNA from bacteriophages T4, T5 and T7 and the general problem of determination of M. J Mol Biol. 1970 Dec 28;54(3):567–577. doi: 10.1016/0022-2836(70)90127-0. [DOI] [PubMed] [Google Scholar]
  16. Giorno R., Hecht R. M., Pettijohn D. Analysis by isopycnic centrifugation of isolated nucleoids of Escherichia coli. Nucleic Acids Res. 1975 Sep;2(9):1559–1567. doi: 10.1093/nar/2.9.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Giorno R., Stamato T., Lydersen B., Pettijohn D. Transcription in vitro of DNA in isolated bacterial nucleoids. J Mol Biol. 1975 Aug 5;96(2):217–237. doi: 10.1016/0022-2836(75)90344-7. [DOI] [PubMed] [Google Scholar]
  18. Hecht R. M., Stimpson D., Pettijohn D. Sedimentation properties of the bacterial chromosome as an isolated nucleoid and as an unfolded DNA fiber. Chromosomal DNA folding measured by rotor speed effects. J Mol Biol. 1977 Apr 15;111(3):257–277. doi: 10.1016/s0022-2836(77)80051-x. [DOI] [PubMed] [Google Scholar]
  19. Howard-Flanders P., Boyce R. P., Theriot L. Three loci in Escherichia coli K-12 that control the excision of pyrimidine dimers and certain other mutagen products from DNA. Genetics. 1966 Jun;53(6):1119–1136. doi: 10.1093/genetics/53.6.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Howard-Flanders P., Theriot L. Mutants of Escherichia coli K-12 defective in DNA repair and in genetic recombination. Genetics. 1966 Jun;53(6):1137–1150. doi: 10.1093/genetics/53.6.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Korch C., Ovrebo S., Kleppe K. Envelope-associated folded chromosomes for Escherichia coli: variations under different physiological conditions. J Bacteriol. 1976 Aug;127(2):904–916. doi: 10.1128/jb.127.2.904-916.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Krasin F., Hutchinson F. Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate genome. J Mol Biol. 1977 Oct 15;116(1):81–98. doi: 10.1016/0022-2836(77)90120-6. [DOI] [PubMed] [Google Scholar]
  23. Kubitschek H. E., Freedman M. L. Chromosome replication and the division cycle of Escherichia coli B-r. J Bacteriol. 1971 Jul;107(1):95–99. doi: 10.1128/jb.107.1.95-99.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lydersen B. K., Pettijohn D. E. Interactions stabilizing DNA tertiary structure in the Escherichia coli chromosome investigated with ionizing radiation. Chromosoma. 1977 Jul 8;62(3):199–215. doi: 10.1007/BF00286044. [DOI] [PubMed] [Google Scholar]
  25. Pettijohn D. E. Prokaryotic DNA in nucleoid structure. CRC Crit Rev Biochem. 1976 Nov;4(2):175–202. doi: 10.3109/10409237609105458. [DOI] [PubMed] [Google Scholar]
  26. Ryder O. A., Smith D. W. Isolation of membrane-associated folded chromosomes from Escherichia coli: effect of protein synthesis inhibition. J Bacteriol. 1974 Dec;120(3):1356–1363. doi: 10.1128/jb.120.3.1356-1363.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  28. Stonington O. G., Pettijohn D. E. The folded genome of Escherichia coli isolated in a protein-DNA-RNA complex. Proc Natl Acad Sci U S A. 1971 Jan;68(1):6–9. doi: 10.1073/pnas.68.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weigle J. Assembly of phage lambda in vitro. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1462–1466. doi: 10.1073/pnas.55.6.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Worcel A., Burgi E. On the structure of the folded chromosome of Escherichia coli. J Mol Biol. 1972 Nov 14;71(2):127–147. doi: 10.1016/0022-2836(72)90342-7. [DOI] [PubMed] [Google Scholar]
  31. Worcel A., Burgi E. Properties of a membrane-attached form of the folded chromosome of Escherichia coli. J Mol Biol. 1974 Jan 5;82(1):91–105. doi: 10.1016/0022-2836(74)90576-2. [DOI] [PubMed] [Google Scholar]
  32. Youngs D. A., Smith K. C. The yield and repair of x-ray-induced single-strand breaks in the DNA of Escherichia coli K-12 cells. Radiat Res. 1976 Oct;68(1):148–154. [PubMed] [Google Scholar]
  33. Zimm B. H. Anomalies in sedimentation. IV. Decrease in sedimentation coefficients of chains at high fields. Biophys Chem. 1974 Apr;1(4):279–291. doi: 10.1016/0301-4622(74)80014-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES