Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Mar;137(3):1140–1144. doi: 10.1128/jb.137.3.1140-1144.1979

Properties of two cyclic nucleotide-deficient mutants of Neurospora crassa.

G Rosenberg, M L Pall
PMCID: PMC218293  PMID: 220210

Abstract

Studies on the crisp-1 (cr-1), cyclic adenosine 3',5'-monophosphate (cAMP)-deficient mutants of Neurospora crassa were undertaken to characterize the response of these mutants to exogenous cyclic nucleotides and cyclic nucleotide analogs. A growth tube bioassay and a radioimmune assay for cyclic nucleotides yielded the following results. (i) 8-Bromo cAMP and N6-monobutyryl cAMP but not dibutyryl cAMP are efficient cAMP analogs in Neurospora, stimulating mycelial elongation of the cr-1 mutants. Exogenous cyclic guanosine 3'5'-monophosphate (cGMP) also stimulates such mycelial elongation. (ii) Both cAMP levels and cGMP levels found in cr-1 mycelia are lower than those in wild type. However, the levels of both cyclic nucleotides are normal in conidia of cr-1. The data on cr-1 mycelia and those reported earlier in Escherichia coli (M. Shibuya, Y. Takebe, and Y. Kaziro (Cell 12:528-528, 1977) show a previously unexpected relationship between cAMP and cGMP metabolism in microorganisms. The semicolonial morphology of another adenylate cyclase-deficient mutant of Neurospora, frost, was not corrected by exogenous cyclic nucleotides or by phosphodiesterase inhibitors indicating that the frost morphology is probably not caused by low endogenous cAMP levels. The low adenylate cyclase activity and the abnormal morphology of frost may be related separately to the linolenate deficiency reported in the mutant.

Full text

PDF
1141

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coffino P., Bourne H. R., Friedrich U., Hochman J., Insel P. A., Lemaire I., Melmon K. L., Tomkins G. M. Molecular mechanisms of cyclic AMP action: a genetic approach. Recent Prog Horm Res. 1976;32:669–684. doi: 10.1016/b978-0-12-571132-6.50037-3. [DOI] [PubMed] [Google Scholar]
  2. Johnson G. S., Friedman R. M., Pastan I. Restoration of several morphological characteristics of normal fibroblasts in sarcoma cells treated with adenosine-3':5'-cyclic monphosphate and its derivatives. Proc Natl Acad Sci U S A. 1971 Feb;68(2):425–429. doi: 10.1073/pnas.68.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Meyer R. B., Jr, Miller J. P. Analogs of cyclic AMP and cyclic GMP: general methods of synthesis and the relationship of structure to enzymic activity. Life Sci. 1974 Mar 16;14(6):1019–1040. doi: 10.1016/0024-3205(74)90228-8. [DOI] [PubMed] [Google Scholar]
  4. Miller J. P., Shuman D. A., Scholten M. B., Dimmitt M. K., Stewart C. M., Khwaja T. A., Robins R. K., Simon L. N. Synthesis and biological activity of some 2' derivatives of adenosine 3',5'-cyclic phosphate. Biochemistry. 1973 Feb 27;12(5):1010–1016. doi: 10.1021/bi00729a035. [DOI] [PubMed] [Google Scholar]
  5. Mishra N. C. The effect of cyclic adenosine monophosphate on the growth of Neurospora crassa. Naturwissenschaften. 1976 Oct;63(10):485–485. doi: 10.1007/BF00624588. [DOI] [PubMed] [Google Scholar]
  6. Pall M. L. Cyclic AMP and the plasma membrane potential in Neurospora crassa. J Biol Chem. 1977 Oct 25;252(20):7146–7150. [PubMed] [Google Scholar]
  7. Perkins D D. New Markers and Multiple Point Linkage Data in Neurospora. Genetics. 1959 Nov;44(6):1185–1208. doi: 10.1093/genetics/44.6.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rosenberg G., Pall M. L. Cyclic AMP and cyclic GMP in germinating conidia of Neurospora crassa. Arch Microbiol. 1978 Jul;118(1):87–90. doi: 10.1007/BF00406079. [DOI] [PubMed] [Google Scholar]
  9. Scott W. A. Adenosine 3':5'-cyclic monophosphate deficiency in Neurospora crassa. Proc Natl Acad Sci U S A. 1976 Sep;73(9):2995–2999. doi: 10.1073/pnas.73.9.2995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Scott W. A., Solomon B. Adenosine 3',5'-cyclic monophosphate and morphology in Neurospora crassa: drug-induced alterations. J Bacteriol. 1975 May;122(2):454–463. doi: 10.1128/jb.122.2.454-463.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Scott W. A., Solomon B. Cyclic 3',5'-AMP phosphodiesterase of Neurospora crassa. Biochem Biophys Res Commun. 1973 Aug 6;53(3):1024–1030. doi: 10.1016/0006-291x(73)90194-0. [DOI] [PubMed] [Google Scholar]
  12. Shibuya M., Takebe Y., Kaziro Y. A possible involvement of cya gene in the synthesis of cyclic guanosine 3':5'-monophosphate in E. coli. Cell. 1977 Oct;12(2):521–528. doi: 10.1016/0092-8674(77)90128-3. [DOI] [PubMed] [Google Scholar]
  13. Swislocki N. I. Decomposition of dibutyryl cyclic AMP in aqueous buffers. Anal Biochem. 1970 Nov;38(1):260–269. doi: 10.1016/0003-2697(70)90175-2. [DOI] [PubMed] [Google Scholar]
  14. Terenzi H. F., Flawia M. M., Tellez-Inon M. T., Torres H. N. Control of Neurospora crassa morphology by cyclic adenosine 3', 5'-monophosphate and dibutyryl cyclic adenosine 3', 5'-monophosphate. J Bacteriol. 1976 Apr;126(1):91–99. doi: 10.1128/jb.126.1.91-99.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Terenzi H. F., Flawiá M. M., Torres H. N. A Neurospora crassa morphological mutant showing reduced adenylate cyclase activity. Biochem Biophys Res Commun. 1974 Jun 18;58(4):990–996. doi: 10.1016/s0006-291x(74)80241-x. [DOI] [PubMed] [Google Scholar]
  16. Torres H. N., Flawiá M. M., Terenzi H. F., Tellez-Iñn M. T. Adenylate cyclase activity in Neurospora crassa. Adv Cyclic Nucleotide Res. 1975;5:67–78. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES