Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Jan;137(1):189–196. doi: 10.1128/jb.137.1.189-196.1979

Carbon and nitrogen repression of arginine catabolic enzymes in Bacillus subtilis.

S Baumberg, C R Harwood
PMCID: PMC218435  PMID: 104957

Abstract

Specific activities of arginase and ornithine aminotransferase, inducible enzymes of arginine catabolism in Bacillus subtilis 168, were examined in cells grown with various carbon and nitrogen sources. Levels of these enzymes were similar in arginine-induced cultures whether glucose or citrate was the carbon source (in contrast to histidase), suggesting that carbon source catabolite repression has only limited effect. In media with combinations of nitrogen sources, glutamine strongly repressed induction of these enzymes by proline or arginine. Ammonium, however, only repressed induction by proline and had no effect on induction by arginine. These effects correlate with generation times in media containing these substances as sole nitrogen sources: growth rates decreased in the order glutamine-arginine-ammonium-proline. Similar phenomena were observed when glutamine or ammonium were added to arginine- or proline-grown cultures, or when arginine or proline were added to glutamine- or ammonium-grown cultures. In the latter cases, an additional feature was apparent, namely a surprisingly long transition between steady-state enzyme levels. The results are compared with those for other bacteria and for eucaryotic microorganisms.

Full text

PDF
196

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Broman K., Stalon V., Wiame J. M. The duplication of arginine catabolism and the meaning of the two ornithine carbamoyltransferases in Bacillus licheniformis. Biochem Biophys Res Commun. 1975 Sep 16;66(2):821–827. doi: 10.1016/0006-291x(75)90583-5. [DOI] [PubMed] [Google Scholar]
  2. Chasin L. A., Magasanik B. Induction and repression of the histidine-degrading enzymes of Bacillus subtilis. J Biol Chem. 1968 Oct 10;243(19):5165–5178. [PubMed] [Google Scholar]
  3. De Crombrugghe E., Chen B., Anderson W. B., Gottesman M. E., Perlman R. L., Pastan I. Role of cyclic adenosine 3',5'-monophosphate and the cyclic adenosine 3',5'-monophosphate receptor protein in the initiation of lac transcription. J Biol Chem. 1971 Dec 10;246(23):7343–7348. [PubMed] [Google Scholar]
  4. Dean D. R., Hoch J. A., Aronson A. I. Alteration of the Bacillus subtilis glutamine synthetase results in overproduction of the enzyme. J Bacteriol. 1977 Sep;131(3):981–987. doi: 10.1128/jb.131.3.981-987.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  6. Harwood C. R., Baumberg S. Arginine hydroxamate-resistant mutants of Bacillus subtilis with altered control of arginine metabolism. J Gen Microbiol. 1977 May;100(1):177–188. doi: 10.1099/00221287-100-1-177. [DOI] [PubMed] [Google Scholar]
  7. Issaly I. M., Issaly A. S. Control of ornithine carbamoyltransferase activityby arginase in Bacillus subtilis. Eur J Biochem. 1974 Dec 2;49(3):485–495. doi: 10.1111/j.1432-1033.1974.tb03853.x. [DOI] [PubMed] [Google Scholar]
  8. Issaly I. M., Issaly A. S., Reissig J. L. Carbamyl phosphate biosynthesis in Bacillus subtilis. Biochim Biophys Acta. 1970 Mar 18;198(3):482–494. doi: 10.1016/0005-2744(70)90126-9. [DOI] [PubMed] [Google Scholar]
  9. LEHRER H. I., JONES M. E. Repression of ornithine transcarbamoyltransferase of Bacillus subtilis. Biochim Biophys Acta. 1962 Dec 4;65:360–362. doi: 10.1016/0006-3002(62)91059-4. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Laishley E. J., Bernlohr R. W. Catabolite repression of "three sporulation enzymes" during growth of Bacillus licheniformis. Biochem Biophys Res Commun. 1966 Jul 6;24(1):85–90. doi: 10.1016/0006-291x(66)90414-1. [DOI] [PubMed] [Google Scholar]
  12. Laishley E. J., Bernlohr R. W. Regulation of arginine and proline catabolism in Bacillus licheniformis. J Bacteriol. 1968 Aug;96(2):322–329. doi: 10.1128/jb.96.2.322-329.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laishley E. J., Bernlohr R. W. The regulation and kinetics of the two ornithine transcarbamylase enzymes of Bacillus licheniformis. Biochim Biophys Acta. 1968 Nov 19;167(3):547–554. doi: 10.1016/0005-2744(68)90044-2. [DOI] [PubMed] [Google Scholar]
  14. Legrain C., Stalon V., Noullez J. P., Mercenier A., Simon J. P., Broman K., Wiame J. M. Structure and function of ornithine carbamoyltransferases. Eur J Biochem. 1977 Nov 1;80(2):401–409. doi: 10.1111/j.1432-1033.1977.tb11895.x. [DOI] [PubMed] [Google Scholar]
  15. MAAS W. K. Studies on repression of arginine biosynthesis in Escherichia coli. Cold Spring Harb Symp Quant Biol. 1961;26:183–191. doi: 10.1101/sqb.1961.026.01.023. [DOI] [PubMed] [Google Scholar]
  16. Magasanik B. Classical and postclassical modes of regulation of the synthesis of degradative bacterial enzymes. Prog Nucleic Acid Res Mol Biol. 1976;17:99–115. doi: 10.1016/s0079-6603(08)60067-7. [DOI] [PubMed] [Google Scholar]
  17. Messenguy F., Wiame J. -M. The control of ornithinetranscarbamylase activity by arginase in Saccharomyces cerevisiae. FEBS Lett. 1969 Apr;3(1):47–49. doi: 10.1016/0014-5793(69)80093-1. [DOI] [PubMed] [Google Scholar]
  18. Ramos F., Stalon V., Piérard A., Wiame J. M. The specialization of the two ornithine carbamoyltransferases of Pseudomonas. Biochim Biophys Acta. 1967 May 16;139(1):98–106. doi: 10.1016/0005-2744(67)90116-7. [DOI] [PubMed] [Google Scholar]
  19. Smyth P. F., Clarke P. H. Catabolite repression of Pseudomonas aeruginosa amidase: the effect of carbon source on amidase synthesis. J Gen Microbiol. 1975 Sep;90(1):81–90. doi: 10.1099/00221287-90-1-81. [DOI] [PubMed] [Google Scholar]
  20. VOGEL R. H., VOGEL H. J. Acetylated intermediates of arginine synthesis in Bacillus subtilis. Biochim Biophys Acta. 1963 Jan 1;69:174–176. doi: 10.1016/0006-3002(63)91241-1. [DOI] [PubMed] [Google Scholar]
  21. Vaca G., Mora J. Nitrogen regulation of arginase in Neurospora crassa. J Bacteriol. 1977 Sep;131(3):719–725. doi: 10.1128/jb.131.3.719-725.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES