Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Jan;137(1):264–273. doi: 10.1128/jb.137.1.264-273.1979

Transport of coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantium.

W E Balch, R S Wolfe
PMCID: PMC218445  PMID: 33148

Abstract

A system for transport of coenzyme M, 2-mercaptoethanesulfonic acid (HS--CoM), in Methanobacterium ruminatium strain M1 required energy, showed saturation kinetics, and concentrated the coenzyme against a gradient. The process was sensitive to temperature and was maximally active at pH 7.1. Cells took up HS--CoM at a linear rate, with a Vmax of 312 pmol/min per mg (dry weight) and an apparent Km of 73 nM. An intracellular pool of up to 5 mM accumulated which was not exchangeable with the medium. Uptake required both hydrogen and carbon dioxide; it was inhibited by O2. Bromoethanesulfonic acid (BrCH2CH2SO3-), a potent inhibitor of methanogenesis in cell-free extracts, inhibited both uptake and methane production. Results of inhibitor studies with derivatives and analogs of the coenzyme showed that the specificity of the carrier is restricted to a limited range of thioether, thioester, and thiocarbonate derivatives. 2-(Methylthio)ethanesulfonic acid (CH3--S--CoM) showed an apparent Ki for HS--CoM uptake of 15 nM, being taken up itself with a Vmax of 320 pmol/min per mg (dry weight) and an apparent Km of 50 nM. An analysis of intracellular pools after HS--CoM uptake indicated that the predominant forms are a heterodisulfide of unknown composition and CH3--S--CoM.

Full text

PDF
271

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balch W. E., Wolfe R. S. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. Appl Environ Microbiol. 1976 Dec;32(6):781–791. doi: 10.1128/aem.32.6.781-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balch W. E., Wolfe R. S. Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid). J Bacteriol. 1979 Jan;137(1):256–263. doi: 10.1128/jb.137.1.256-263.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradbeer C., Woodrow M. L. Transport of vitamin B12 in Escherichia coli: energy dependence. J Bacteriol. 1976 Oct;128(1):99–104. doi: 10.1128/jb.128.1.99-104.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bryant M. P., McBride B. C., Wolfe R. S. Hydrogen-oxidizing methane bacteria. I. Cultivation and methanogenesis. J Bacteriol. 1968 Mar;95(3):1118–1123. doi: 10.1128/jb.95.3.1118-1123.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Di Girolamo P. M., Bradbeer C. Transport of vitamin B 12 in Escherichia coli. J Bacteriol. 1971 Jun;106(3):745–750. doi: 10.1128/jb.106.3.745-750.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. ELLMAN G. L. A colorimetric method for determining low concentrations of mercaptans. Arch Biochem Biophys. 1958 Apr;74(2):443–450. doi: 10.1016/0003-9861(58)90014-6. [DOI] [PubMed] [Google Scholar]
  7. Gunsalus R. P., Romesser J. A., Wolfe R. S. Preparation of coenzyme M analogues and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum. Biochemistry. 1978 Jun 13;17(12):2374–2377. doi: 10.1021/bi00605a019. [DOI] [PubMed] [Google Scholar]
  8. Mulligan J. H., Snell E. E. Transport and metabolism of vitamin B6 in Salmonella typhimurium LT2. J Biol Chem. 1976 Feb 25;251(4):1052–1056. [PubMed] [Google Scholar]
  9. Mulligan J. H., Snell E. E. Transport and metabolism of vitamin B6 in lactic acid bacteria. J Biol Chem. 1977 Feb 10;252(3):835–839. [PubMed] [Google Scholar]
  10. Roberton A. M., Wolfe R. S. Adenosine triphosphate pools in Methanobacterium. J Bacteriol. 1970 Apr;102(1):43–51. doi: 10.1128/jb.102.1.43-51.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Shane B., Snell E. E. Transport and metabolism of vitamin B6 in the yeast Saccharomyces carlsbergensis 4228. J Biol Chem. 1976 Feb 25;251(4):1042–1051. [PubMed] [Google Scholar]
  12. Shane B., Stokstad E. L. Transport and metabolism of folates by bacteria. J Biol Chem. 1975 Mar 25;250(6):2243–2253. [PubMed] [Google Scholar]
  13. Taylor C. D., McBride B. C., Wolfe R. S., Bryant M. P. Coenzyme M, essential for growth of a rumen strain of Methanobacterium ruminantium. J Bacteriol. 1974 Nov;120(2):974–975. doi: 10.1128/jb.120.2.974-975.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Taylor C. D., Wolfe R. S. Structure and methylation of coenzyme M(HSCH2CH2SO3). J Biol Chem. 1974 Aug 10;249(15):4879–4885. [PubMed] [Google Scholar]
  15. Winkler H. H., Wilson T. H. The role of energy coupling in the transport of beta-galactosides by Escherichia coli. J Biol Chem. 1966 May 25;241(10):2200–2211. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES