Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Jan;137(1):365–373. doi: 10.1128/jb.137.1.365-373.1979

Escherichia coli K-12 mutants that allow transport of maltose via the beta-galactoside transport system.

H A Shuman, J Beckwith
PMCID: PMC218459  PMID: 368019

Abstract

We have isolated mutants of Escherichia coli that have an altered beta-galactoside transport system. This altered transport system is able to transport a sugar, maltose, that the wild-type beta-galactoside transport system is unable to transport. The mutation that alters the specificity of the transport system is in the lacY gene, and we refer to the allele as lacYmal. The lacYmal allele was detected originally in strains in which the lac genes were fused to the malF gene. Thus, as a result of gene fusion and isolation of the lacYmal mutation, a new transport system was evolved with regulatory properties and specificity similar to those of the original maltose transport system. Maltose transport via the lacYmal gene product is independent of all of the normal maltose transport system components. The altered transport system shows a higher affinity than the wild-type transport system for two normal substrates of the beta-galactoside transport system, thiomethyl-beta-D-galactoside and o-nitrophenyl-beta-D-galactoside.

Full text

PDF
372

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews K. J., Lin E. C. Selective advantages of various bacterial carbohydrate transport mechanisms. Fed Proc. 1976 Aug;35(10):2185–2189. [PubMed] [Google Scholar]
  2. BUTTIN G., COHEN G. N., MONOD J., RICKENBERG H. V. La galactoside-perméase d'Escherichia coli. Ann Inst Pasteur (Paris) 1956 Dec;91(6):829–857. [PubMed] [Google Scholar]
  3. Bachmann B. J., Low K. B., Taylor A. L. Recalibrated linkage map of Escherichia coli K-12. Bacteriol Rev. 1976 Mar;40(1):116–167. doi: 10.1128/br.40.1.116-167.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown C. E., Hogg R. W. A second transport system for L-arabinose in Escherichia coli B-r controlled by the araC gene. J Bacteriol. 1972 Aug;111(2):606–613. doi: 10.1128/jb.111.2.606-613.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Casadaban M. J. Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol. 1976 Jul 5;104(3):541–555. doi: 10.1016/0022-2836(76)90119-4. [DOI] [PubMed] [Google Scholar]
  6. Fox C. F., Kennedy E. P. Specific labeling and partial purification of the M protein, a component of the beta-galactoside transport system of Escherichia coli. Proc Natl Acad Sci U S A. 1965 Sep;54(3):891–899. doi: 10.1073/pnas.54.3.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gottesman S., Beckwith J. R. Directed transposition of the arabinose operon: a technique for the isolation of specialized transducing bacteriophages for any Escherichia coli gene. J Mol Biol. 1969 Aug 28;44(1):117–127. doi: 10.1016/0022-2836(69)90408-2. [DOI] [PubMed] [Google Scholar]
  8. Hofnung M. Divergent operons and the genetic structure of the maltose B region in Escherichia coli K12. Genetics. 1974 Feb;76(2):169–184. doi: 10.1093/genetics/76.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hofnung M., Hatfield D., Schwartz M. malB region in Escherichia coli K-12: characterization of new mutations. J Bacteriol. 1974 Jan;117(1):40–47. doi: 10.1128/jb.117.1.40-47.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kellermann O., Szmelcman S. Active transport of maltose in Escherichia coli K12. Involvement of a "periplasmic" maltose binding protein. Eur J Biochem. 1974 Aug 15;47(1):139–149. doi: 10.1111/j.1432-1033.1974.tb03677.x. [DOI] [PubMed] [Google Scholar]
  11. Kennedy E. P., Rumley M. K., Armstrong J. B. Dierect measurement of the binding of labeled sugars to the lactose permease M protein. J Biol Chem. 1974 Jan 10;249(1):33–37. [PubMed] [Google Scholar]
  12. Messer A. Lactose permeation via the arabinose transport system in Escherichia coli K-12. J Bacteriol. 1974 Oct;120(1):266–272. doi: 10.1128/jb.120.1.266-272.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Randall-Hazelbauer L., Schwartz M. Isolation of the bacteriophage lambda receptor from Escherichia coli. J Bacteriol. 1973 Dec;116(3):1436–1446. doi: 10.1128/jb.116.3.1436-1446.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ricard M., Hirota Y., Jacob F. Isolement de mutants de membrane chez Escherichia coli. C R Acad Sci Hebd Seances Acad Sci D. 1970 May 25;270(21):2591–2593. [PubMed] [Google Scholar]
  15. Sandermann H., Jr beta-D-Galactoside transport in Escherichia coli: substrate recognition. Eur J Biochem. 1977 Nov 1;80(2):507–515. doi: 10.1111/j.1432-1033.1977.tb11906.x. [DOI] [PubMed] [Google Scholar]
  16. Schuldiner S., Kaback H. R. Fluorescent galactosides as probes for the lac carrier protein. Biochim Biophys Acta. 1977 Nov 14;472(3-4):399–418. doi: 10.1016/0304-4157(77)90004-1. [DOI] [PubMed] [Google Scholar]
  17. Silhavy T. J., Casadaban M. J., Shuman H. A., Beckwith J. R. Conversion of beta-galactosidase to a membrane-bound state by gene fusion. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3423–3427. doi: 10.1073/pnas.73.10.3423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Szmelcman S., Hofnung M. Maltose transport in Escherichia coli K-12: involvement of the bacteriophage lambda receptor. J Bacteriol. 1975 Oct;124(1):112–118. doi: 10.1128/jb.124.1.112-118.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Szmelcman S., Schwartz M., Silhavy T. J., Boos W. Maltose transport in Escherichia coli K12. A comparison of transport kinetics in wild-type and lambda-resistant mutants as measured by fluorescence quenching. Eur J Biochem. 1976 May 17;65(1):13–19. doi: 10.1111/j.1432-1033.1976.tb10383.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES