Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Jan;137(1):415–419. doi: 10.1128/jb.137.1.415-419.1979

alpha-Ketoglutarate dehydrogenase mutant of Rhizobium meliloti.

M J Duncan, D G Fraenkel
PMCID: PMC218465  PMID: 762018

Abstract

A mutant of Rhizobium meliloti selected as unable to grow on L-arabinose also failed to grow on acetate or pyruvate. It grew, but slower than the parental strain, on many other carbon sources. Assay showed it to lack alpha-ketoglutarate dehydrogenase (kgd) activity, and revertants of normal growth phenotype contained the activity again. Other enzymes of the tricarboxylic acid cycle and of the glyoxylate cycle were present in both mutant and parent strains. Enzymes of pyruvate metabolism were also assayed. L-Arabinose degradation in R. meliloti was found to differ from the known pathway in R. japonicum, since the former strain lacked 2-keto-o-deoxy-L-arabonate aldolase but contained alpha-ketoglutarate semialdehyde dehydrogenase; thus, it is likely that R. meliloti has the L-arabinose pathway leading to alpha-ketoglutarate rather than the one to glycolaldehyde and pyruvate. This finding accounts for the L-arabinose negativity of the mutant. Resting cells of the mutant were able to metabolize the three substrates which did not allow growth.

Full text

PDF
416

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arias A., Cerveńansky C., Gardiol A., Martínez-Drets G. Phosphoglucose isomerase mutant of Rhizobium meliloti. J Bacteriol. 1979 Jan;137(1):409–414. doi: 10.1128/jb.137.1.409-414.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COHEN G. N., RICKENBERG H. V. Concentration spécifique réversible des amino acides chez Escherichia coli. Ann Inst Pasteur (Paris) 1956 Nov;91(5):693–720. [PubMed] [Google Scholar]
  3. Creaghan I. T., Guest J. R. Suppression of the succinate requirement of lipoamide dehydrogenase mutants of Escherichia coli by mutations affecting succinate dehydrogenase activity. J Gen Microbiol. 1977 Sep;102(1):183–194. doi: 10.1099/00221287-102-1-183. [DOI] [PubMed] [Google Scholar]
  4. DAGLEY S., TRUDGILL P. W. THE METABOLISM OF GALACTARATE, D-GLUCARATE AND VARIOUS PENTOSES BY SPECIES OF PSEUDOMONAS. Biochem J. 1965 Apr;95:48–58. doi: 10.1042/bj0950048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dahms A. S., Anderson R. L. 2-keto-3-deoxyl-L-arabonate aldolase and its role in a new pathway of L-arabinose degradation. Biochem Biophys Res Commun. 1969 Aug 22;36(5):809–814. doi: 10.1016/0006-291x(69)90681-0. [DOI] [PubMed] [Google Scholar]
  6. GRAHAM P. H. STUDIES ON THE UTILISATION OF CARBOHYDRATES AND KREBS CYCLE INTERMEDIATES BY RHIZOBIA, USING AN AGAR PLATE METHOD. Antonie Van Leeuwenhoek. 1964;30:68–72. doi: 10.1007/BF02046703. [DOI] [PubMed] [Google Scholar]
  7. Herbert A. A., Guest J. R. Biochemical and genetic studies with lysine+methionine mutants of Escherichia coli: lipoic acid and alpha-ketoglutarate dehydrogenase-less mutants. J Gen Microbiol. 1968 Oct;53(3):363–381. doi: 10.1099/00221287-53-3-363. [DOI] [PubMed] [Google Scholar]
  8. Johnson G. V., Evans H. J., Ching T. Enzymes of the glyoxylate cycle in rhizobia and nodules of legumes. Plant Physiol. 1966 Oct;41(8):1330–1336. doi: 10.1104/pp.41.8.1330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KOSICKI G. W., SRERE P. A. Kinetic studies on the citrate-condensing enzyme. J Biol Chem. 1961 Oct;236:2560–2565. [PubMed] [Google Scholar]
  10. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  11. Lillich T. T., Elkan G. H. The biosynthesis of aspartic acid, glutamic acid, and alanine in Rhizobium japonicum. Can J Microbiol. 1971 May;17(5):683–688. doi: 10.1139/m71-110. [DOI] [PubMed] [Google Scholar]
  12. O'Brien R., Chuang D. T., Taylor B. L., Utter M. F. Novel enzymic machinery for the metabolism of oxalacetate, phosphoenolpyruvate, and pyruvate in Pseudomonas citronellolis. J Biol Chem. 1977 Feb 25;252(4):1257–1263. [PubMed] [Google Scholar]
  13. Pedrosa F. O., Zancan G. T. L-Arabinose metabolism in Rhizobium japonicum. J Bacteriol. 1974 Jul;119(1):336–338. doi: 10.1128/jb.119.1.336-338.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Prusiner S., Miller R. E., Valentine R. C. Adenosine 3':5'-cyclic monophosphate control of the enzymes of glutamine metabolism in Escherichia coli. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2922–2926. doi: 10.1073/pnas.69.10.2922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rosenqvist H., Kasula H., Reunanen O., Nurmikko V. The 4-aminobutyrate pathway and 2-oxoglutarate dehydrogenase in Escherichia coli. Acta Chem Scand. 1973;27(8):3091–3100. doi: 10.3891/acta.chem.scand.27-3091. [DOI] [PubMed] [Google Scholar]
  16. Rutberg B., Hoch J. A. Citric acid cycle: gene-enzyme relationships in Bacillus subtilis. J Bacteriol. 1970 Nov;104(2):826–833. doi: 10.1128/jb.104.2.826-833.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smith A. J., Hoare D. S. Specialist phototrophs, lithotrophs, and methylotrophs: a unity among a diversity of procaryotes? Bacteriol Rev. 1977 Jun;41(2):419–448. doi: 10.1128/br.41.2.419-448.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Taylor I. J., Anthony C. A biochemical basis for obligate methylotrophy: properties of a mutant of Pseudomonas AM1 lacking 2-oxoglutarate dehydrogenase. J Gen Microbiol. 1976 Apr;93(2):259–265. doi: 10.1099/00221287-93-2-259. [DOI] [PubMed] [Google Scholar]
  19. VANDERWINKEL E., LIARD P., RAMOS F., WIAME J. M. Genetic control of the regulation of isocitritase and malate synthase in Escherichia coli K 12. Biochem Biophys Res Commun. 1963 Jul 18;12:157–162. doi: 10.1016/0006-291x(63)90254-7. [DOI] [PubMed] [Google Scholar]
  20. WEIMBERG R., DOUDOROFF M. The oxidation of L-arabinose by Pseudomonas saccharophila. J Biol Chem. 1955 Dec;217(2):607–624. [PubMed] [Google Scholar]
  21. WEISSBACH A., HURWITZ J. The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. I. Identification. J Biol Chem. 1959 Apr;234(4):705–709. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES