Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1983 May 1;157(5):1379–1395. doi: 10.1084/jem.157.5.1379

Analysis of T cell hybridomas. IV. Characterization of inducible suppressor cell hybridomas

PMCID: PMC2187012  PMID: 6189933

Abstract

The Ts3 subset of suppressor cells is generated after antigen priming, but, in order to express suppressor activity these cells require an additional activation step involving triggering with specific suppressor factors (TsF2). This report characterizes two cloned hybridoma cell lines (pTs3 hybridomas) that represent this stage of Ts3 cell differentiation. These hybridoma cells could be specifically activated with TsF2 to release another antigen-specific suppressor factor (TsF3) within 6 h. The inducible feature of these cells permitted analysis of the signals necessary for Ts3 activation. Antigen was not required for activation. Only TsF2 factors derived from antiidiotypic second-order suppressor cells could activate pTs3 hybridoma cells. There were stringent genetic restrictions on the ability of Ts2 to activate pTs3 cells. Triggering of pTs3 required corecognition of two determinants on the TsF2 molecular complex, i.e., the I-J and Igh-related idiotypic determinants. Thus, although pTs3 cells could absorb TsF2 from an I-J-mismatched source, these pTs3 were not activated by the allogeneic TsF2. For activation to occur, the H-2 (I-J) and Igh complexes of the TsF2 donor had to match those of the strain from which the pTs3 cells were derived. Mixing two distinct TsF2, one derived from an H-2-matched source and the other from an Igh- matched source, failed to activate pTs3 cells. Once activated, the pTs3 cells released a suppressive material that was indistinguishable from the TsF3 factors previously characterized in this system. Finally, the activation of the pTs3 cells apparently does not induce the de novo synthesis of TsF3 since the suppressive activity could be extracted from nonactivated pTs3 cells. Thus, the inducible pTs3 hybridomas represent a mature stage in the differentiation cycle of Ts3 cells and provide a means for studying the nature of the specific signals required for Ts3 activation.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dorf M. E., Okuda K., Minami M. Dissection of a suppressor cell cascade. Curr Top Microbiol Immunol. 1982;100:61–67. doi: 10.1007/978-3-642-68586-6_7. [DOI] [PubMed] [Google Scholar]
  2. Jerne N. K. Towards a network theory of the immune system. Ann Immunol (Paris) 1974 Jan;125C(1-2):373–389. [PubMed] [Google Scholar]
  3. Ju S. T., Dorf M. E. Cross-induction of predominant NPb idiotypic antibodies with derivatives of (4-hydroxy-3-nitrophenyl) acetyl. J Immunol. 1981 Dec;127(6):2224–2228. [PubMed] [Google Scholar]
  4. Kapp J. A., Araneo B. A. Antigen-specific suppressor T cell interactions. I. Induction of an MHC-restricted suppressor factor specific for L-glutamic acid50-L-tyrosine50. J Immunol. 1982 Jun;128(6):2447–2452. [PubMed] [Google Scholar]
  5. Lei H. Y., Ju S. T., Dorf M. E., Waltenbaugh C. Regulation of immune responses by I-J gene products. III. GT-specific suppressor factor is composed of separate I-J and idiotype-bearing chains. J Immunol. 1983 Mar;130(3):1274–1279. [PubMed] [Google Scholar]
  6. Minami M., Furusawa S., Dorf M. E. I-J restrictions on the activation and interaction of parental and F1-derived TS3 suppressor cells. J Exp Med. 1982 Aug 1;156(2):465–479. doi: 10.1084/jem.156.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Minami M., Honji N., Dorf M. E. Mechanism responsible for the induction of I-J restriction on TS3 suppressor cells. J Exp Med. 1982 Nov 1;156(5):1502–1515. doi: 10.1084/jem.156.5.1502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Minami M., Okuda K., Furusawa S., Benacerraf B., Dorf M. E. Analysis of T cell hybridomas. I. Characterization of H-2 and Igh-restricted monoclonal suppressor factors. J Exp Med. 1981 Nov 1;154(5):1390–1402. doi: 10.1084/jem.154.5.1390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Okuda K., Minami M., Furusawa M., Dorf M. E. Analysis of T cell hybridomas. II. Comparisons among three distinct types of monoclonal suppressor factors. J Exp Med. 1981 Dec 1;154(6):1838–1851. doi: 10.1084/jem.154.6.1838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Okuda K., Minami M., Ju S. T., Dorf M. E. Functional association of idiotypic and I-J determinants on the antigen receptor of suppressor T cells. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4557–4561. doi: 10.1073/pnas.78.7.4557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Okuda K., Minami M., Sherr D. H., Dorf M. E. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. XI. Pseudogenetic restrictions of hybridoma suppressor factors. J Exp Med. 1981 Aug 1;154(2):468–479. doi: 10.1084/jem.154.2.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sherr D. H., Dorf M. E. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. IX. Characterization of Idiotype-specific effector-phase suppressor cells on plaque-forming cell responses in vitro. J Exp Med. 1981 Jun 1;153(6):1445–1456. doi: 10.1084/jem.153.6.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sherr D. H., Ju S. T., Dorf M. E. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. XII. Fine specificity of anti-idiotypic suppressor T cells (Ts2). J Exp Med. 1981 Nov 1;154(5):1382–1389. doi: 10.1084/jem.154.5.1382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sherr D. H., Ju S. T., Weinberger J. Z., Benacerraf B., Dorf M. E. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. VII. Idiotype-specific suppression of plaque-forming cell responses. J Exp Med. 1981 Mar 1;153(3):640–652. doi: 10.1084/jem.153.3.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sherr D. H., Minami M., Okuda K., Dorf M. E. Analysis of T cell hybridomas. III. Distinctions between two types of hapten-specific suppressor factors that affect plaque-forming cell responses. J Exp Med. 1983 Feb 1;157(2):515–529. doi: 10.1084/jem.157.2.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sredni B., Schwartz R. H. Antigen-specific, proliferating T lymphocyte clones. Methodology, specificity, MHC restriction and alloreactivity. Immunol Rev. 1981;54:187–223. doi: 10.1111/j.1600-065x.1981.tb00438.x. [DOI] [PubMed] [Google Scholar]
  17. Sunday M. E., Benacerraf B., Dorf M. E. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. VIII. Suppressor cell pathways in cutaneous sensitivity responses. J Exp Med. 1981 Apr 1;153(4):811–822. doi: 10.1084/jem.153.4.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sunday M. E., Weinberger J. Z., Benacerraf B., Dorf M. E. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. J Immunol. 1980 Oct;125(4):1601–1605. [PubMed] [Google Scholar]
  19. Sunday M. E., Weinberger J. Z., Wolff S., Dorf M. E. Anti-receptor antibody-induced suppression of murine H-Y-specific delayed-type hypersensitivity responses. Eur J Immunol. 1981 Aug;11(8):626–631. doi: 10.1002/eji.1830110807. [DOI] [PubMed] [Google Scholar]
  20. Takaoki M., Sy M. S., Whitaker B., Nepom J., Finberg R., Germain R. N., Nisonoff A., Benacerraf B., Greene M. I. Biologic activity of an idiotype-bearing suppressor T cell factor produced by a long-term T cell hybridoma. J Immunol. 1982 Jan;128(1):49–53. [PubMed] [Google Scholar]
  21. Taniguchi M., Saito T., Takei I., Tokuhisa T. Presence of interchain disulfide bonds between two gene products that compose the secreted form of an antigen-specific suppressor factor. J Exp Med. 1981 Jun 1;153(6):1672–1677. doi: 10.1084/jem.153.6.1672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Taussig M. J., Holliman A. Structure of an antigen-specific suppressor factor produced by a hybrid T-cell line. Nature. 1979 Jan 25;277(5694):308–310. doi: 10.1038/277308a0. [DOI] [PubMed] [Google Scholar]
  23. Thomas W. R., Watkins M. C., Asherson G. L. Differences in the ability of T cells to suppress the induction and expression of contact sensitivity. Immunology. 1981 Jan;42(1):53–59. [PMC free article] [PubMed] [Google Scholar]
  24. Waltenbaugh C., Thèze J., Kapp J. A., Benacerraf B. Immunosuppressive factor(s) specific for L-glutamic acid50-L-tyrosine50 (GT). III. Generation of suppressor T cells by a suppressive extract derived from GT-primed lymphoid cells. J Exp Med. 1977 Oct 1;146(4):970–985. doi: 10.1084/jem.146.4.970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Watson J. Continuous proliferation of murine antigen-specific helper T lymphocytes in culture. J Exp Med. 1979 Dec 1;150(6):1510–1519. doi: 10.1084/jem.150.6.1510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weinberger J. Z., Germain R. N., Benacerraf B., Dorf M. E. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. V. Role of idiotypes in the suppressor pathway. J Exp Med. 1980 Jul 1;152(1):161–169. doi: 10.1084/jem.152.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weinberger J. Z., Germain R. N., Ju S. T., Greene M. I., Benacerraf B., Dorf M. E. Hapten-specific T-cell responses to 4-hydroxy-3-nitrophenyl acetyl. II. Demonstration of idiotypic determinants on suppressor T cells. J Exp Med. 1979 Oct 1;150(4):761–776. doi: 10.1084/jem.150.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yamauchi K., Chao N., Murphy D. B., Gershon R. K. Molecular composition of an antigen-specific, Ly-1 T suppressor inducer factor. One molecule binds antigen and is I-J-; another is I-J+, does not bind antigen, and imparts an Igh-variable region-linked restriction. J Exp Med. 1982 Mar 1;155(3):655–665. doi: 10.1084/jem.155.3.655. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES