Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Mar 1;171(3):645–658. doi: 10.1084/jem.171.3.645

In vivo administration of interleukin 2 plus T cell-depleted syngeneic marrow prevents graft-versus-host disease mortality and permits alloengraftment

PMCID: PMC2187782  PMID: 2307931

Abstract

Previous work from this laboratory has demonstrated that T cell- depleted (TCD) syngeneic marrow can delay, but not prevent, the mortality from acute graft-vs.-host disease (GVHD) caused by MHC- mismatched lymphoid cells administered to lethally irradiated mice. We demonstrate here that a protective effect against GVHD is also observed after in vivo treatment with IL-2. Administration of 10,000-50,000 U of IL-2 twice daily for the first 5 d after bone marrow transplantation markedly reduced the mortality from both acute and chronic GVHD induced across complete MHC barriers in lethally irradiated mice, and frequently led to long-term survival. Complete allogeneic reconstitution was demonstrated in all long-term survivors of this treatment regimen. While either IL-2 or TCD syngeneic marrow administered alone was protective in some experiments, the maximal protective effect was observed after administration of both IL-2 and TCD syngeneic marrow, especially when the effects of IL-2 were suboptimal. The timing of IL-2 administration was critical to this beneficial effect, since a delay of 7 d in commencing IL-2 treatment was associated with accelerated GVHD mortality. This new approach to the prevention of GVHD permits the administration of allogeneic T cells, and may therefore avoid the increased incidence of graft failure and loss of antileukemic effects associated with the T cell depletion of allogeneic marrow, which is otherwise required for the prevention of GVHD.

Full Text

The Full Text of this article is available as a PDF (933.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azuma E., Kaplan J. Role of lymphokine-activated killer cells as mediators of veto and natural suppression. J Immunol. 1988 Oct 15;141(8):2601–2606. [PubMed] [Google Scholar]
  2. Butturini A., Bortin M. M., Gale R. P. Graft-versus-leukemia following bone marrow transplantation. Bone Marrow Transplant. 1987 Oct;2(3):233–242. [PubMed] [Google Scholar]
  3. Chang A. E., Hyatt C. L., Rosenberg S. A. Systemic administration of recombinant human interleukin-2 in mice. J Biol Response Mod. 1984 Oct;3(5):561–572. [PubMed] [Google Scholar]
  4. Cuturi M. C., Anegón I., Sherman F., Loudon R., Clark S. C., Perussia B., Trinchieri G. Production of hematopoietic colony-stimulating factors by human natural killer cells. J Exp Med. 1989 Feb 1;169(2):569–583. doi: 10.1084/jem.169.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dorshkind K., Rosse C. Physical, biologic, and phenotypic properties of natural regulatory cells in murine bone marrow. Am J Anat. 1982 May;164(1):1–17. doi: 10.1002/aja.1001640102. [DOI] [PubMed] [Google Scholar]
  6. Garcia-Peñarrubia P., Koster F. T., Kelley R. O., McDowell T. D., Bankhurst A. D. Antibacterial activity of human natural killer cells. J Exp Med. 1989 Jan 1;169(1):99–113. doi: 10.1084/jem.169.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ghayur T., Seemayer T. A., Kongshavn P. A., Gartner J. G., Lapp W. S. Graft-versus-host reactions in the beige mouse. An investigation of the role of host and donor natural killer cells in the pathogenesis of graft-versus-host disease. Transplantation. 1987 Aug;44(2):261–267. doi: 10.1097/00007890-198708000-00017. [DOI] [PubMed] [Google Scholar]
  8. Hank J. A., Kohler P. C., Weil-Hillman G., Rosenthal N., Moore K. H., Storer B., Minkoff D., Bradshaw J., Bechhofer R., Sondel P. M. In vivo induction of the lymphokine-activated killer phenomenon: interleukin 2-dependent human non-major histocompatibility complex-restricted cytotoxicity generated in vivo during administration of human recombinant interleukin 2. Cancer Res. 1988 Apr 1;48(7):1965–1971. [PubMed] [Google Scholar]
  9. Hertel-Wulff B., Okada S., Oseroff A., Strober S. In vitro propagation and cloning of murine natural suppressor (NS) cells. J Immunol. 1984 Nov;133(5):2791–2796. [PubMed] [Google Scholar]
  10. Ildstad S. T., Wren S. M., Bluestone J. A., Barbieri S. A., Sachs D. H. Characterization of mixed allogeneic chimeras. Immunocompetence, in vitro reactivity, and genetic specificity of tolerance. J Exp Med. 1985 Jul 1;162(1):231–244. doi: 10.1084/jem.162.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ildstad S. T., Wren S. M., Bluestone J. A., Barbieri S. A., Stephany D., Sachs D. H. Effect of selective T cell depletion of host and/or donor bone marrow on lymphopoietic repopulation, tolerance, and graft-vs-host disease in mixed allogeneic chimeras (B10 + B10.D2----B10). J Immunol. 1986 Jan;136(1):28–33. [PubMed] [Google Scholar]
  12. Jadus M. R., Peck A. B. Lethal murine graft-versus-host disease in the absence of detectable cytotoxic T lymphocytes. Transplantation. 1983 Sep;36(3):281–289. doi: 10.1097/00007890-198309000-00011. [DOI] [PubMed] [Google Scholar]
  13. Jones J. M., Wilson R., Bealmear P. M. Mortality and gross pathology of secondary disease in germfree mouse radiation chimeras. Radiat Res. 1971 Mar;45(3):577–588. [PubMed] [Google Scholar]
  14. Kawakami K., Bloom E. T. Lymphokine-activated killer cells derived from murine bone marrow: age-associated difference in precursor cell populations demonstrated by response to interferon. Cell Immunol. 1988 Oct 1;116(1):163–171. doi: 10.1016/0008-8749(88)90218-3. [DOI] [PubMed] [Google Scholar]
  15. Kedar E., Tsuberi B. Z., Landesberg A., Anafi M., Leshem B., Gillis S., Urdal D. L., Slavin S. In vitro and in vivo cytokine-induced facilitation of immunohematopoietic reconstitution in mice undergoing bone marrow transplantation. Bone Marrow Transplant. 1988 Jul;3(4):297–314. [PubMed] [Google Scholar]
  16. Kernan N. A., Flomenberg N., Dupont B., O'Reilly R. J. Graft rejection in recipients of T-cell-depleted HLA-nonidentical marrow transplants for leukemia. Identification of host-derived antidonor allocytotoxic T lymphocytes. Transplantation. 1987 Jun;43(6):842–847. [PubMed] [Google Scholar]
  17. LeFor A. T., Eisenthal A., Rosenberg S. A. Heterogeneity of lymphokine-activated killer cells induced by IL-2. Separate lymphoid subpopulations lyse tumor, allogeneic blasts, and modified syngeneic blasts. J Immunol. 1988 Jun 1;140(11):4062–4069. [PubMed] [Google Scholar]
  18. Lotze M. T., Custer M. C., Rosenberg S. A. Intraperitoneal administration of interleukin-2 in patients with cancer. Arch Surg. 1986 Dec;121(12):1373–1379. doi: 10.1001/archsurg.1986.01400120019002. [DOI] [PubMed] [Google Scholar]
  19. Malkovský M., Brenner M. K., Hunt R., Rastan S., Doré C., Brown S., North M. E., Asherson G. L., Prentice H. G., Medawar P. B. T-cell depletion of allogeneic bone marrow prevents acceleration of graft-versus-host disease induced by exogenous interleukin 2. Cell Immunol. 1986 Dec;103(2):476–480. doi: 10.1016/0008-8749(86)90108-5. [DOI] [PubMed] [Google Scholar]
  20. Martin P. J., Hansen J. A., Buckner C. D., Sanders J. E., Deeg H. J., Stewart P., Appelbaum F. R., Clift R., Fefer A., Witherspoon R. P. Effects of in vitro depletion of T cells in HLA-identical allogeneic marrow grafts. Blood. 1985 Sep;66(3):664–672. [PubMed] [Google Scholar]
  21. Martin P. J., Hansen J. A., Torok-Storb B., Durnam D., Przepiorka D., O'Quigley J., Sanders J., Sullivan K. M., Witherspoon R. P., Deeg H. J. Graft failure in patients receiving T cell-depleted HLA-identical allogeneic marrow transplants. Bone Marrow Transplant. 1988 Sep;3(5):445–456. [PubMed] [Google Scholar]
  22. Muraoka S., Miller R. G. Cells in bone marrow and in T cell colonies grown from bone marrow can suppress generation of cytotoxic T lymphocytes directed against their self antigens. J Exp Med. 1980 Jul 1;152(1):54–71. doi: 10.1084/jem.152.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Murphy W. J., Kumar V., Bennett M. Acute rejection of murine bone marrow allografts by natural killer cells and T cells. Differences in kinetics and target antigens recognized. J Exp Med. 1987 Nov 1;166(5):1499–1509. doi: 10.1084/jem.166.5.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Murphy W. J., Kumar V., Bennett M. Rejection of bone marrow allografts by mice with severe combined immune deficiency (SCID). Evidence that natural killer cells can mediate the specificity of marrow graft rejection. J Exp Med. 1987 Apr 1;165(4):1212–1217. doi: 10.1084/jem.165.4.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ozato K., Mayer N. M., Sachs D. H. Monoclonal antibodies to mouse major histocompatibility complex antigens. Transplantation. 1982 Sep;34(3):113–120. doi: 10.1097/00007890-198209000-00001. [DOI] [PubMed] [Google Scholar]
  26. Peace D. J., Cheever M. A. Toxicity and therapeutic efficacy of high-dose interleukin 2. In vivo infusion of antibody to NK-1.1 attenuates toxicity without compromising efficacy against murine leukemia. J Exp Med. 1989 Jan 1;169(1):161–173. doi: 10.1084/jem.169.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Poynton C. H. T cell depletion in bone marrow transplantation. Bone Marrow Transplant. 1988 Jul;3(4):265–279. [PubMed] [Google Scholar]
  28. Poynton C. H. T cell depletion in bone marrow transplantation. Bone Marrow Transplant. 1988 Jul;3(4):265–279. [PubMed] [Google Scholar]
  29. Prentice H. G., Blacklock H. A., Janossy G., Gilmore M. J., Price-Jones L., Tidman N., Trejdosiewicz L. K., Skeggs D. B., Panjwani D., Ball S. Depletion of T lymphocytes in donor marrow prevents significant graft-versus-host disease in matched allogeneic leukaemic marrow transplant recipients. Lancet. 1984 Mar 3;1(8375):472–476. doi: 10.1016/s0140-6736(84)92848-4. [DOI] [PubMed] [Google Scholar]
  30. Rosenberg S. A., Mulé J. J., Spiess P. J., Reichert C. M., Schwarz S. L. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med. 1985 May 1;161(5):1169–1188. doi: 10.1084/jem.161.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sarneva M., Vujanovic N. L., Van den Brink M. R., Herberman R. B., Hiserodt J. C. Lymphokine-activated killer cells in rats: generation of natural killer cells and lymphokine-activated killer cells from bone marrow progenitor cells. Cell Immunol. 1989 Feb;118(2):448–457. doi: 10.1016/0008-8749(89)90392-4. [DOI] [PubMed] [Google Scholar]
  32. Segal D. M., Sharrow S. O., Jones J. F., Siraganian R. P. Fc (IgG) receptors on rat basophilic leukemia cells. J Immunol. 1981 Jan;126(1):138–145. [PubMed] [Google Scholar]
  33. Sherman L. A., Randolph C. P. Monoclonal anti-H-2Kb antibodies detect serological differences between H-2Kb mutants. Immunogenetics. 1981;12(1-2):183–186. doi: 10.1007/BF01561661. [DOI] [PubMed] [Google Scholar]
  34. Slavin S., Eckerstein A., Weiss L. Adoptive immunotherapy in conjunction with bone marrow transplantation--amplification of natural host defence mechanisms against cancer by recombinant IL-2. Nat Immun Cell Growth Regul. 1988;7(3):180–184. [PubMed] [Google Scholar]
  35. Sprent J., Schaefer M., Gao E. K., Korngold R. Role of T cell subsets in lethal graft-versus-host disease (GVHD) directed to class I versus class II H-2 differences. I. L3T4+ cells can either augment or retard GVHD elicited by Lyt-2+ cells in class I different hosts. J Exp Med. 1988 Feb 1;167(2):556–569. doi: 10.1084/jem.167.2.556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Strober S., Palathumpat V., Schwadron R., Hertel-Wulff B. Cloned natural suppressor cells prevent lethal graft-vs-host disease. J Immunol. 1987 Feb 1;138(3):699–703. [PubMed] [Google Scholar]
  37. Sykes M., Bukhari Z., Sachs D. H. Graft-versus-leukemia effect using mixed allogeneic bone marrow transplantation. Bone Marrow Transplant. 1989 Sep;4(5):465–474. [PubMed] [Google Scholar]
  38. Sykes M., Eisenthal A., Sachs D. H. Mechanism of protection from graft-vs-host disease in murine mixed allogeneic chimeras. I. Development of a null cell population suppressive of cell-mediated lympholysis responses and derived from the syngeneic bone marrow component. J Immunol. 1988 May 1;140(9):2903–2911. [PubMed] [Google Scholar]
  39. Sykes M., Sheard M., Sachs D. H. Effects of T cell depletion in radiation bone marrow chimeras. I. Evidence for a donor cell population which increases allogeneic chimerism but which lacks the potential to produce GVHD. J Immunol. 1988 Oct 1;141(7):2282–2288. [PubMed] [Google Scholar]
  40. Weiden P. L., Sullivan K. M., Flournoy N., Storb R., Thomas E. D. Antileukemic effect of chronic graft-versus-host disease: contribution to improved survival after allogeneic marrow transplantation. N Engl J Med. 1981 Jun 18;304(25):1529–1533. doi: 10.1056/NEJM198106183042507. [DOI] [PubMed] [Google Scholar]
  41. van Bekkum D. W., Knaan S. Role of bacterial microflora in development of intestinal lesions from graft-versus-host reaction. J Natl Cancer Inst. 1977 Mar;58(3):787–790. doi: 10.1093/jnci/58.3.787. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES