Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Jun 1;169(6):1879–1894. doi: 10.1084/jem.169.6.1879

Histones have high affinity for the glomerular basement membrane. Relevance for immune complex formation in lupus nephritis

PMCID: PMC2189332  PMID: 2732675

Abstract

An effort has been made to integrate insights on charge-based interactions in immune complex glomerulonephritis with nuclear antigen involvement in lupus nephritis. Attention was focussed on the histones, a group of highly cationic nuclear constituents, which could be expected to bind to fixed anionic sites present in the glomerular basement membrane (GBM). We demonstrated that all histone subfractions, prepared according to Johns (4), have a high affinity for GBM and the basement membrane of peritubular capillaries. Tissue uptake of 125I- labeled histones was measured by injecting 200 micrograms of each fraction into the left kidney via the aorta and measuring organ uptake after 15 min. In glomeruli isolated from the left kidneys, the following quantities of histones were found: f1, 13 micrograms; f2a (f2al + f2a2), 17 micrograms; f2b, 17 micrograms; and f3, 32 micrograms. Kinetic studies of glomerular binding showed that f1 disappeared much more rapidly than f2a. The high affinity of histones (pI between 10.5 and 11.0; mol wt 10,000-22,000) for the GBM correlates well with their ability to form aggregates (mol wt greater than 100,000) for comparison lysozyme (pI 11, mol wt 14,000), which does not aggregate spontaneously bound poorly (0.4 micrograms in isolated glomeruli). The quantity of histones and lysozyme found in the isolated glomeruli paralleled their in vitro affinity for a Heparin-Sepharose column (gradient elution studies). This gel matrix contains the sulfated, highly anionic polysaccharide heparin, which is similar to the negatively charged heparan sulfate present in the GBM. Lysozyme eluted with 0.15 M NaCl, f1 with 1 M NaCl, and f2a, f2b, and f3 could not be fully desorbed even with 2 M NaCl; 6 M guanidine-HCl was necessary. Two further findings of great relevance for the concept of induction of immune complex glomerulonephritis by histones were: (a) glomerular-bound histone was accessible for specific antibody given intravenously; and (b) prior binding of histones promoted glomerular deposition of anionic antigens, as could be shown with ssDNA fragments. These data justify the proposal that glomerular deposition of histones can induce immune complex formation, start an inflammatory process, and produce tissue damage.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler S. G., Wang H., Ward H. J., Cohen A. H., Border W. A. Electrical charge. Its role in the pathogenesis and prevention of experimental membranous nephropathy in the rabbit. J Clin Invest. 1983 Mar;71(3):487–499. doi: 10.1172/JCI110793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adolph K. W., Cheng S. M., Laemmli U. K. Role of nonhistone proteins in metaphase chromosome structure. Cell. 1977 Nov;12(3):805–816. doi: 10.1016/0092-8674(77)90279-3. [DOI] [PubMed] [Google Scholar]
  3. Andres G. A., Accinni L., Beiser S. M., Christian C. L., Cinotti G. A., Erlanger B. F., Hsu K. C., Seegal B. C. Localization of fluorescein-labeled antinucleoside antibodies in glomeruli of patients with active systemic lupus erythematosus nephritis. J Clin Invest. 1970 Nov;49(11):2106–2118. doi: 10.1172/JCI106428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barnes J. L., Levine S. P., Venkatachalam M. A. Binding of platelet factor four (PF 4) to glomerular polyanion. Kidney Int. 1984 May;25(5):759–765. doi: 10.1038/ki.1984.87. [DOI] [PubMed] [Google Scholar]
  5. Barnes J. L., Radnik R. A., Gilchrist E. P., Venkatachalam M. A. Size and charge selective permeability defects induced in glomerular basement membrane by a polycation. Kidney Int. 1984 Jan;25(1):11–19. doi: 10.1038/ki.1984.2. [DOI] [PubMed] [Google Scholar]
  6. Barnes J. L., Venkatachalam M. A. Enhancement of glomerular immune complex deposition by a circulating polycation. J Exp Med. 1984 Jul 1;160(1):286–293. doi: 10.1084/jem.160.1.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bartley J., Chalkley R. Further studies of a thymus nucleohistone-associated protease. J Biol Chem. 1970 Sep 10;245(17):4286–4292. [PubMed] [Google Scholar]
  8. Batsford S. R., Takamiya M., Vogt A. A model of in situ immune complex glomerulonephritis in the rat employing cationized ferritin. Clin Nephrol. 1980 Nov;14(5):211–216. [PubMed] [Google Scholar]
  9. Border W. A., Ward H. J., Kamil E. S., Cohen A. H. Induction of membranous nephropathy in rabbits by administration of an exogenous cationic antigen. J Clin Invest. 1982 Feb;69(2):451–461. doi: 10.1172/JCI110469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. CEPPELLINI R., POLLI E., CELADA F. A DNA-reacting factor in serum of a patient with lupus erythematosus diffusus. Proc Soc Exp Biol Med. 1957 Dec;96(3):572–574. doi: 10.3181/00379727-96-23544. [DOI] [PubMed] [Google Scholar]
  11. Caulfield J. P., Farquhar M. G. Distribution of annionic sites in glomerular basement membranes: their possible role in filtration and attachment. Proc Natl Acad Sci U S A. 1976 May;73(5):1646–1650. doi: 10.1073/pnas.73.5.1646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chused T. M., Steinberg A. D., Talal N. The clearance and localization of nucleic acids by New Zealand and normal mice. Clin Exp Immunol. 1972 Dec;12(4):465–476. [PMC free article] [PubMed] [Google Scholar]
  13. D'Anna J. A., Jr, Isenberg I. A histone cross-complexing pattern. Biochemistry. 1974 Nov 19;13(24):4992–4997. doi: 10.1021/bi00721a019. [DOI] [PubMed] [Google Scholar]
  14. Davis P., Percy J. S., Russell A. S. Correlation between levels of DNA antibodies and clinical disease activity in SLE. Ann Rheum Dis. 1977 Apr;36(2):157–159. doi: 10.1136/ard.36.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Doty P., Marmur J., Eigner J., Schildkraut C. STRAND SEPARATION AND SPECIFIC RECOMBINATION IN DEOXYRIBONUCLEIC ACIDS: PHYSICAL CHEMICAL STUDIES. Proc Natl Acad Sci U S A. 1960 Apr;46(4):461–476. doi: 10.1073/pnas.46.4.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Eickbush T. H., Moudrianakis E. N. The histone core complex: an octamer assembled by two sets of protein-protein interactions. Biochemistry. 1978 Nov 14;17(23):4955–4964. doi: 10.1021/bi00616a016. [DOI] [PubMed] [Google Scholar]
  17. Elgin S. C., Weintraub H. Chromosomal proteins and chromatin structure. Annu Rev Biochem. 1975;44:725–774. doi: 10.1146/annurev.bi.44.070175.003453. [DOI] [PubMed] [Google Scholar]
  18. Emlen W., Mannik M. Clearance of circulating DNA-anti-DNA immune complexes in mice. J Exp Med. 1982 Apr 1;155(4):1210–1215. doi: 10.1084/jem.155.4.1210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Emlen W., Mannik M. Kinetics and mechanisms for removal of circulating single-stranded DNA in mice. J Exp Med. 1978 Mar 1;147(3):684–699. doi: 10.1084/jem.147.3.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Faaber P., Capel P. J., Rijke G. P., Vierwinden G., van de Putte L. B., Koene R. A. Cross-reactivity of anti-DNA antibodies with proteoglycans. Clin Exp Immunol. 1984 Mar;55(3):502–508. [PMC free article] [PubMed] [Google Scholar]
  21. Faaber P., Rijke T. P., van de Putte L. B., Capel P. J., Berden J. H. Cross-reactivity of human and murine anti-DNA antibodies with heparan sulfate. The major glycosaminoglycan in glomerular basement membranes. J Clin Invest. 1986 Jun;77(6):1824–1830. doi: 10.1172/JCI112508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Fournié G. J. Circulating DNA and lupus nephritis. Kidney Int. 1988 Feb;33(2):487–497. doi: 10.1038/ki.1988.25. [DOI] [PubMed] [Google Scholar]
  23. Gioud M., Kaci M. A., Monier J. C. Histone antibodies in systemic lupus erythematosus. A possible diagnostic tool. Arthritis Rheum. 1982 Apr;25(4):407–413. doi: 10.1002/art.1780250408. [DOI] [PubMed] [Google Scholar]
  24. Gosse C., Le Pecq J. B., Defrance P., Paoletti C. Initial degradation of deoxyribonucleic acid after injection in mammals. Cancer Res. 1965 Jul;25(6):877–883. [PubMed] [Google Scholar]
  25. HOLMAN H., DEICHER H. R. The reaction of the lupus erythematosus (L.E.) cell factor with deoxyribonucleoprotein of the cell nucleus. J Clin Invest. 1959 Nov;38:2059–2072. doi: 10.1172/JCI103984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Izui S., Lambert P. H., Fournié G. J., Türler H., Miescher P. A. Features of systemic lupus erythematosus in mice injected with bacterial lipopolysaccharides: identificantion of circulating DNA and renal localization of DNA-anti-DNA complexes. J Exp Med. 1977 May 1;145(5):1115–1130. doi: 10.1084/jem.145.5.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Izui S., Lambert P. H., Miescher P. A. In vitro demonstration of a particular affinity of glomerular basement membrane and collagen for DNA. A possible basis for a local formation of DNA-anti-DNA complexes in systemic lupus erythematosus. J Exp Med. 1976 Aug 1;144(2):428–443. doi: 10.1084/jem.144.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Johns E. W. Studies on histones. 7. Preparative methods for histone fractions from calf thymus. Biochem J. 1964 Jul;92(1):55–59. doi: 10.1042/bj0920055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Koffler D., Schur P. H., Kunkel H. G. Immunological studies concerning the nephritis of systemic lupus erythematosus. J Exp Med. 1967 Oct 1;126(4):607–624. doi: 10.1084/jem.126.4.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kornberg R. D. Chromatin structure: a repeating unit of histones and DNA. Science. 1974 May 24;184(4139):868–871. doi: 10.1126/science.184.4139.868. [DOI] [PubMed] [Google Scholar]
  31. Kornberg R. D. Structure of chromatin. Annu Rev Biochem. 1977;46:931–954. doi: 10.1146/annurev.bi.46.070177.004435. [DOI] [PubMed] [Google Scholar]
  32. Kornberg R. D., Thomas J. O. Chromatin structure; oligomers of the histones. Science. 1974 May 24;184(4139):865–868. doi: 10.1126/science.184.4139.865. [DOI] [PubMed] [Google Scholar]
  33. Lambert P. H., Dixon F. J. Pathogenesis of the glomerulonephritis of NZB/W mice. J Exp Med. 1968 Mar 1;127(3):507–522. doi: 10.1084/jem.127.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lange A. Evaluation of the simultaneous estimation of anti-dsDNA and anti-ssDNA antibodies for clinical purposes. Clin Exp Immunol. 1978 Mar;31(3):472–481. [PMC free article] [PubMed] [Google Scholar]
  35. Lightfoot R. W., Redecha P. B., Levesanos N. Longitudinal studies of anti-DNA antibody levels in SLE. Scand J Rheumatol Suppl. 1975;11:52–58. doi: 10.3109/03009747509095629. [DOI] [PubMed] [Google Scholar]
  36. MIESCHER P., STRASSLE R. New serological methods for the detection of the L.E. factor. Vox Sang. 1957 Sep;2(4):283–287. doi: 10.1111/j.1423-0410.1957.tb03704.x. [DOI] [PubMed] [Google Scholar]
  37. Natali P. G., Tan E. M. Experimental renal disease induced by DNA-anti-DNA immune complexes. J Clin Invest. 1972 Feb;51(2):345–355. doi: 10.1172/JCI106820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. O'Regan S., Turgeon C. Unilateral glomerular DNA-anti-DNA complex formation in situ. J Clin Lab Immunol. 1984 Oct;15(2):101–104. [PubMed] [Google Scholar]
  39. Oite T., Batsford S. R., Mihatsch M. J., Takamiya H., Vogt A. Quantitative studies of in situ immune complex glomerulonephritis in the rat induced by planted, cationized antigen. J Exp Med. 1982 Feb 1;155(2):460–474. doi: 10.1084/jem.155.2.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Olins A. L., Olins D. E. Spheroid chromatin units (v bodies). Science. 1974 Jan 25;183(4122):330–332. doi: 10.1126/science.183.4122.330. [DOI] [PubMed] [Google Scholar]
  41. ROBBINS W. C., HOLMAN H. R., DEICHER H., KUNKEL H. G. Complement fixation with cell nuclei and DNA in lupus erythematosus. Proc Soc Exp Biol Med. 1957 Dec;96(3):575–579. doi: 10.3181/00379727-96-23545. [DOI] [PubMed] [Google Scholar]
  42. Rubin R. L., Moudrianakis E. N. The F3-F2a1 complex as a unit in the self-assembly of nucleoproteins. Biochemistry. 1975 Apr 22;14(8):1718–1726. doi: 10.1021/bi00679a026. [DOI] [PubMed] [Google Scholar]
  43. SELIGMANN M. Mise en évidence dans le sérum de malades atteints de lupus erythémateux disséminé d'une substance déterminant une réaction de précipitation avec l'acide désoxyribonucléique. C R Hebd Seances Acad Sci. 1957 Jul 8;245(2):243–245. [PubMed] [Google Scholar]
  44. Sperling R., Bustin M. Dynamic equilibrium in histone assembly: self-assembly of single histones and histone pairs. Biochemistry. 1975 Jul 29;14(15):3322–3331. doi: 10.1021/bi00686a006. [DOI] [PubMed] [Google Scholar]
  45. Sperling R., Wachtel E. J. The histones. Adv Protein Chem. 1981;34:1–60. doi: 10.1016/s0065-3233(08)60517-3. [DOI] [PubMed] [Google Scholar]
  46. Stollar B. D., Ward M. Rabbit antibodies to histone fractions as specific reagents for preparative and comparative studies. J Biol Chem. 1970 Mar 25;245(6):1261–1266. [PubMed] [Google Scholar]
  47. Strassberg J., Paule J., Gonick H. C., Maxwell M. H., Kleeman C. R. The quantitative estimation of perfusible glomeruli and the collagen and non-collagen nitrogen of the normal kidney. Nephron. 1967;4(6):384–393. doi: 10.1159/000179597. [DOI] [PubMed] [Google Scholar]
  48. Thomas J. O., Butler P. J. Characterization of the octamer of histones free in solution. J Mol Biol. 1977 Nov;116(4):769–781. doi: 10.1016/0022-2836(77)90270-4. [DOI] [PubMed] [Google Scholar]
  49. Thomas J. O., Kornberg R. D. An octamer of histones in chromatin and free in solution. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2626–2630. doi: 10.1073/pnas.72.7.2626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Vogt A., Rohrbach R., Shimizu F., Takamiya H., Batsford S. Interaction of cationized antigen with rat glomerular basement membrane: in situ immune complex formation. Kidney Int. 1982 Jul;22(1):27–35. doi: 10.1038/ki.1982.128. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES