Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1989 Oct 1;170(4):1191–1209. doi: 10.1084/jem.170.4.1191

Molecular analysis of original antigenic sin. I. Clonal selection, somatic mutation, and isotype switching during a memory B cell response

PMCID: PMC2189480  PMID: 2477487

Abstract

To determine how the memory B cell population elicited to one epitope might be used in immune responses to other, structurally related epitopes, we explored the phenomenon of original antigenic sin. Strain A/J mice reproducibly respond to immunization with p-azophenylarsonate (Ars) by production of anti-Ars antibodies encoded predominantly by a single VH gene segment (VHIdCR). The structural analogue of Ars p- azophenylsulfonate (Sulf) fails alone to elicit such V regions, but can do so in A/J mice previously immunized with Ars, providing a means to specifically examine B cells capable of responding secondarily to a crossreactive antigen (i.e., memory cells). VHIdCR-expressing hybridomas were derived from the Ars-primed, Sulf-boosted original antigenic sin response of A/J mice at various times after Ars priming, and the properties of the antibodies they express and the structure of the genes encoding these antibodies were characterized. The data obtained support the following conclusions: (a) The Ars-induced memory B cell population capable of being crossreactively stimulated by Sulf is largely formed from a small fraction of all B cells participating in the anti-Ars primary response that express somatically mutated V regions; (b) the antibody repertoire and clonal composition of this population are stable over long periods of time; (c) memory B cells are capable of clonal expansion in the absence of a high rate of V gene somatic mutation; (d) the activation requirements for clonal selection of memory, versus naive B cells appear to differ; and (e) a major fraction of Ars-induced memory B cells express either IgM or IgG3 prior to and during the initial stages of the sin response.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abney E. R., Keeler K. D., Parkhouse R. M., Willcox H. N. Immunoglobulin M receptors on memory cells of immunoglobulin G antibody-forming cell clones. Eur J Immunol. 1976 Jun;6(6):443–450. doi: 10.1002/eji.1830060612. [DOI] [PubMed] [Google Scholar]
  2. Alt F. W., Baltimore D. Joining of immunoglobulin heavy chain gene segments: implications from a chromosome with evidence of three D-JH fusions. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4118–4122. doi: 10.1073/pnas.79.13.4118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alt F. W., Yancopoulos G. D., Blackwell T. K., Wood C., Thomas E., Boss M., Coffman R., Rosenberg N., Tonegawa S., Baltimore D. Ordered rearrangement of immunoglobulin heavy chain variable region segments. EMBO J. 1984 Jun;3(6):1209–1219. doi: 10.1002/j.1460-2075.1984.tb01955.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berek C., Jarvis J. M., Milstein C. Activation of memory and virgin B cell clones in hyperimmune animals. Eur J Immunol. 1987 Aug;17(8):1121–1129. doi: 10.1002/eji.1830170808. [DOI] [PubMed] [Google Scholar]
  5. Black S. J., van der Loo W., Loken M. R., Herzenberg L. A. Expression of IgD by murine lymphocytes. Loss of surface IgD indicates maturation of memory B cells. J Exp Med. 1978 Apr 1;147(4):984–996. doi: 10.1084/jem.147.4.984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blier P. R., Bothwell A. A limited number of B cell lineages generates the heterogeneity of a secondary immune response. J Immunol. 1987 Dec 15;139(12):3996–4006. [PubMed] [Google Scholar]
  7. Church G. M., Kieffer-Higgins S. Multiplex DNA sequencing. Science. 1988 Apr 8;240(4849):185–188. doi: 10.1126/science.3353714. [DOI] [PubMed] [Google Scholar]
  8. Claflin J. L., Berry J., Flaherty D., Dunnick W. Somatic evolution of diversity among anti-phosphocholine antibodies induced with Proteus morganii. J Immunol. 1987 May 1;138(9):3060–3068. [PubMed] [Google Scholar]
  9. Clarke S. H., Huppi K., Ruezinsky D., Staudt L., Gerhard W., Weigert M. Inter- and intraclonal diversity in the antibody response to influenza hemagglutinin. J Exp Med. 1985 Apr 1;161(4):687–704. doi: 10.1084/jem.161.4.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Coleclough C., Cooper D., Perry R. P. Rearrangement of immunoglobulin heavy chain genes during B-lymphocyte development as revealed by studies of mouse plasmacytoma cells. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1422–1426. doi: 10.1073/pnas.77.3.1422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Coleclough C., Perry R. P., Karjalainen K., Weigert M. Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expression. Nature. 1981 Apr 2;290(5805):372–378. doi: 10.1038/290372a0. [DOI] [PubMed] [Google Scholar]
  12. Cory S., Jackson J., Adams J. M. Deletions in the constant region locus can account for switches in immunoglobulin heavy chain expression. Nature. 1980 Jun 12;285(5765):450–456. doi: 10.1038/285450a0. [DOI] [PubMed] [Google Scholar]
  13. DAVENPORT F. M., HENNESSY A. V., FRANCIS T., Jr Epidemiologic and immunologic significance of age distribution of antibody to antigenic variants of influenza virus. J Exp Med. 1953 Dec;98(6):641–656. doi: 10.1084/jem.98.6.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eisen H. N., Little J. R., Steiner L. A., Simms E. S., Gray W. Degeneracy in the secondary immune response: stimulation of antibody formation by cross-reacting antigens. Isr J Med Sci. 1969 May-Jun;5(3):338–351. [PubMed] [Google Scholar]
  15. Fazekas de St Groth, Webster R. G. Disquisitions on Original Antigenic Sin. II. Proof in lower creatures. J Exp Med. 1966 Sep 1;124(3):347–361. doi: 10.1084/jem.124.3.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fish S., Manser T. Influence of the macromolecular form of a B cell epitope on the expression of antibody variable and constant region structure. J Exp Med. 1987 Sep 1;166(3):711–724. doi: 10.1084/jem.166.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hayakawa K., Ishii R., Yamasaki K., Kishimoto T., Hardy R. R. Isolation of high-affinity memory B cells: phycoerythrin as a probe for antigen-binding cells. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1379–1383. doi: 10.1073/pnas.84.5.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hertel-Wulff B., Goodman J. W., Fathman C. G., Lewis G. K. Arsonate-specific murine T cell clones. I. Genetic control and antigen specificity. J Exp Med. 1983 Mar 1;157(3):987–997. doi: 10.1084/jem.157.3.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Herzenberg L. A., Black S. J., Tokuhisa T., Herzenberg L. A. Memory B cells at successive stages of differentiation. Affinity maturation and the role of IgD receptors. J Exp Med. 1980 May 1;151(5):1071–1087. doi: 10.1084/jem.151.5.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Honjo T., Kataoka T. Organization of immunoglobulin heavy chain genes and allelic deletion model. Proc Natl Acad Sci U S A. 1978 May;75(5):2140–2144. doi: 10.1073/pnas.75.5.2140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hummel M., Berry J. K., Dunnick W. Switch region content of hybridomas: the two spleen cell Igh loci tend to rearrange to the same isotype. J Immunol. 1987 May 15;138(10):3539–3548. [PubMed] [Google Scholar]
  22. Kaartinen M., Griffiths G. M., Hamlyn P. H., Markham A. F., Karjalainen K., Pelkonen J. L., Mäkelä O., Milstein C. Anti-oxazolone hybridomas and the structure of the oxazolone idiotype. J Immunol. 1983 Feb;130(2):937–945. [PubMed] [Google Scholar]
  23. Kapsalis A. A., Tung A. S., Nisonoff A. Relative combining affinities of anti-p-azophenylarsonate antibodies bearing a cross-reactive idiotype. Immunochemistry. 1976 Sep;13(9):783–787. doi: 10.1016/0019-2791(76)90201-9. [DOI] [PubMed] [Google Scholar]
  24. Katzenberg D. R., Birshtein B. K. Sites of switch recombination in IgG2b- and IgG2a-producing hybridomas. J Immunol. 1988 May 1;140(9):3219–3227. [PubMed] [Google Scholar]
  25. Klinman N. R., Press J. L., Segal G. P. Overlap stimulation of primary and secondary B cells by cross-reacting determinants. J Exp Med. 1973 Nov 1;138(5):1276–1281. doi: 10.1084/jem.138.5.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kuettner M. G., Wang A. L., Nisonoff A. Quantitative investigations of idiotypic antibodies. VI. Idiotypic specificity as a potential genetic marker for the variable regions of mouse immunoglobulin polypeptide chains. J Exp Med. 1972 Mar 1;135(3):579–595. doi: 10.1084/jem.135.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lafrenz D., Strober S., Vitetta E. The relationship between surface immunoglobulin isotype and the immune function of murine B lymphocytes. V. High affinity secondary antibody responses are transferred by both IgD-positive and IgD-negative memory B cells. J Immunol. 1981 Sep;127(3):867–872. [PubMed] [Google Scholar]
  28. Landolfi N. F., Capra J. D., Tucker P. W. Germ-line sequence of the DH segment employed in Ars-A antibodies: implications for the generation of junctional diversity. J Immunol. 1986 Jul 1;137(1):362–365. [PubMed] [Google Scholar]
  29. Leo O., Slaoui M., Marvel J., Milner E. C., Hiernaux J., Moser M., Capra J. D., Urbain J. Idiotypic analysis of polyclonal and monoclonal anti-p-azophenylarsonate antibodies of BALB/c mice expressing the major cross-reactive idiotype of the A/J strain. J Immunol. 1985 Mar;134(3):1734–1739. [PubMed] [Google Scholar]
  30. Liu Y. J., Oldfield S., MacLennan I. C. Memory B cells in T cell-dependent antibody responses colonize the splenic marginal zones. Eur J Immunol. 1988 Mar;18(3):355–362. doi: 10.1002/eji.1830180306. [DOI] [PubMed] [Google Scholar]
  31. Manser T. Evolution of antibody structure during the immune response. The differentiative potential of a single B lymphocyte. J Exp Med. 1989 Oct 1;170(4):1211–1230. doi: 10.1084/jem.170.4.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Manser T., Gefter M. L. Isolation of hybridomas expressing a specific heavy chain variable region gene segment by using a screening technique that detects mRNA sequences in whole cell lysates. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2470–2474. doi: 10.1073/pnas.81.8.2470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. McKean D., Huppi K., Bell M., Staudt L., Gerhard W., Weigert M. Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. Proc Natl Acad Sci U S A. 1984 May;81(10):3180–3184. doi: 10.1073/pnas.81.10.3180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Okumura K., Julius M. H., Tsu T., Herzenberg L. A., Herzenberg L. A. Demonstration that IgG memory is carried by IgG-bearing cells. Eur J Immunol. 1976 Jul;6(7):467–472. doi: 10.1002/eji.1830060704. [DOI] [PubMed] [Google Scholar]
  35. Rabbitts T. H., Forster A., Dunnick W., Bentley D. L. The role of gene deletion in the immunoglobulin heavy chain switch. Nature. 1980 Jan 24;283(5745):351–356. doi: 10.1038/283351a0. [DOI] [PubMed] [Google Scholar]
  36. Rajewsky K., Förster I., Cumano A. Evolutionary and somatic selection of the antibody repertoire in the mouse. Science. 1987 Nov 20;238(4830):1088–1094. doi: 10.1126/science.3317826. [DOI] [PubMed] [Google Scholar]
  37. Rao A., Faas S. J., Cantor H. Activation specificity of arsonate-reactive T cell clones. Structural requirements for hapten recognition and comparison with monoclonal antibodies. J Exp Med. 1984 Feb 1;159(2):479–494. doi: 10.1084/jem.159.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rothstein T. L., Gefter M. L. Affinity analysis of idiotype-positive and idiotype-negative Ars-binding hybridoma proteins and Ars-immune sera. Mol Immunol. 1983 Feb;20(2):161–168. doi: 10.1016/0161-5890(83)90127-x. [DOI] [PubMed] [Google Scholar]
  39. Sakano H., Maki R., Kurosawa Y., Roeder W., Tonegawa S. Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes. Nature. 1980 Aug 14;286(5774):676–683. doi: 10.1038/286676a0. [DOI] [PubMed] [Google Scholar]
  40. Sharon J., Gefter M. L., Wysocki L. J., Margolies M. N. Recurrent somatic mutations in mouse antibodies to p-azophenylarsonate increase affinity for hapten. J Immunol. 1989 Jan 15;142(2):596–601. [PubMed] [Google Scholar]
  41. Shlomchik M. J., Aucoin A. H., Pisetsky D. S., Weigert M. G. Structure and function of anti-DNA autoantibodies derived from a single autoimmune mouse. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9150–9154. doi: 10.1073/pnas.84.24.9150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shlomchik M. J., Marshak-Rothstein A., Wolfowicz C. B., Rothstein T. L., Weigert M. G. The role of clonal selection and somatic mutation in autoimmunity. 1987 Aug 27-Sep 2Nature. 328(6133):805–811. doi: 10.1038/328805a0. [DOI] [PubMed] [Google Scholar]
  43. Siekevitz M., Huang S. Y., Gefter M. L. The genetic basis of antibody production: a single heavy chain variable region gene encodes all molecules bearing the dominant anti-arsonate idiotype in the strain A mouse. Eur J Immunol. 1983 Feb;13(2):123–132. doi: 10.1002/eji.1830130207. [DOI] [PubMed] [Google Scholar]
  44. Siekevitz M., Kocks C., Rajewsky K., Dildrop R. Analysis of somatic mutation and class switching in naive and memory B cells generating adoptive primary and secondary responses. Cell. 1987 Mar 13;48(5):757–770. doi: 10.1016/0092-8674(87)90073-0. [DOI] [PubMed] [Google Scholar]
  45. Siskind G. W., Benacerraf B. Cell selection by antigen in the immune response. Adv Immunol. 1969;10:1–50. doi: 10.1016/s0065-2776(08)60414-9. [DOI] [PubMed] [Google Scholar]
  46. Wysocki L. J., Gridley T., Huang S., Grandea A. G., 3rd, Gefter M. L. Single germline VH and V kappa genes encode predominating antibody variable regions elicited in strain A mice by immunization with p-azophenylarsonate. J Exp Med. 1987 Jul 1;166(1):1–11. doi: 10.1084/jem.166.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wysocki L. J., Manser T., Gridley T., Gefter M. L. Molecular limitations on variable-gene junctional diversity. J Immunol. 1986 Dec 15;137(12):3699–3701. [PubMed] [Google Scholar]
  48. Wysocki L., Manser T., Gefter M. L. Somatic evolution of variable region structures during an immune response. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1847–1851. doi: 10.1073/pnas.83.6.1847. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES