Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1975 Sep 1;142(3):722–731. doi: 10.1084/jem.142.3.722

Studies in porphyria. IV. Expression of the gene defect of acute intermittent porphyria in cultured human skin fibroblasts and amniotic cells: prenatal diagnosis of the porphyric trait

PMCID: PMC2189917  PMID: 1165472

Abstract

The gene lesion of the porphyrin-heme synthetic pathway in acute intermittent porphyria (AIP) is reflected in a deficient level of activity of the cytosol enzyme uroporphyrinogen I synthetase (URO-S). A marked URO-S deficiency has been demonstrated in the liver and in circulating erythrocytes of individuals with both active and latent AIP. This enzymic abnormality accounts for the excessive production and excretion into urine of the porphyrin precursors, lamda-aminolevulinic acid (ALA) and porphobilinogen (PBG) in AIP subjects. In this study, utilizing cell culture techniques, a marked URO-S deficiency has also been demonstrated in skin fibroblasts from AIP patients and in cells derived through aminocentesis from an approximately 17-wk old fetus. The prenatal diagnosis of the AIP trait in this fetus was confirmed postnatally by the demonstration in the child of a deficient level of erythrocyte URO-S activity which was comparable to those found in her AIP mother and affected sibling and which was approximately one-half the levels characterizing her normal father and aunt and a second unaffected sibling. The identification of the URO-S deficiency in cultured human fibroblasts from AIP patients was facilitated by a newly developed, sensitive assay for the enzyme activity. In this assay, the ability of such cells to convert ALA to protoporphyrin was quantitated; in the sequence of reactions involved in this transformation, URO-S is limiting so that the gene defect of AIP could be simply and precisely determined by appropriate spectrofluorometry of cell extracts. The technique described has distinct advantages over the direct enzymatic assay for URO-S activity in cultured human skin fibroblasts and permits clear differentiation of AIP carrier from normal individuals.

Full Text

The Full Text of this article is available as a PDF (659.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOGORAD L. The enzymatic synthesis of porphyrins from porphobilinogen. II. Uroporphyrin III. J Biol Chem. 1958 Aug;233(2):510–515. [PubMed] [Google Scholar]
  2. Bonkowsky H. L., Tschudy D. P., Weinbach E. C., Ebert P. S., Doherty J. M. Porphyrin synthesis and mitochondrial respiration in acute intermittent porphyria: studies using cultured human fibroblasts. J Lab Clin Med. 1975 Jan;85(1):93–102. [PubMed] [Google Scholar]
  3. Bradlow H. L., Gillette P. N., Gallagher T. F., Kappas A. Studies in porphyria. II. Evidence for a deficiency of steroid delta-4-5-alpha-reductase activity in acute intermittent porphyria. J Exp Med. 1973 Oct 1;138(4):754–763. doi: 10.1084/jem.138.4.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Granick S. The induction in vitro of the synthesis of delta-aminolevulinic acid synthetase in chemical porphyria: a response to certain drugs, sex hormones, and foreign chemicals. J Biol Chem. 1966 Mar 25;241(6):1359–1375. [PubMed] [Google Scholar]
  5. Kappas A., Bradlow H. L., Gillette P. N., Gallagher T. F. Studies in porphyria. I. A defect in the reductive transformation of natural steroid hormones in the hereditary liver disease, acute intermittent porphyria. J Exp Med. 1972 Nov 1;136(5):1043–1053. doi: 10.1084/jem.136.5.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kappas A., Bradlow H. L., Gillette P. N., Levere R. D., Gallagher T. F. A defect of steroid hormone metabolism in acute intermittent porphyria. Fed Proc. 1972 Jul-Aug;31(4):1293–1297. [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Levin E. Y. Uroporphyrinogen 3 cosynthetase from mouse spleen. Biochemistry. 1968 Nov;7(11):3781–3788. doi: 10.1021/bi00851a001. [DOI] [PubMed] [Google Scholar]
  9. Meyer U. A. Intermittent acute porphyria. Clinical and biochemical studies of disordered heme biosynthesis. Enzyme. 1973;16(1):334–342. [PubMed] [Google Scholar]
  10. Meyer U. A., Strand L. J., Doss M., Rees A. C., Marver H. S. Intermittent acute porphyria--demonstration of a genetic defect in porphobilinogen metabolism. N Engl J Med. 1972 Jun 15;286(24):1277–1282. doi: 10.1056/NEJM197206152862401. [DOI] [PubMed] [Google Scholar]
  11. Miyagi K., Cardinal R., Bossenmaier I., Watson C. J. The serum porphobilinogen and hepatic porphobilinogen deaminase in normal and porphyric individuals. J Lab Clin Med. 1971 Nov;78(5):683–695. [PubMed] [Google Scholar]
  12. Nakao K., Wada O., Kitamura T., Uono K., Urata G. Activity of amino-laevulinic acid synthetase in normal and porphyric human livers. Nature. 1966 May 21;210(5038):838–839. doi: 10.1038/210838b0. [DOI] [PubMed] [Google Scholar]
  13. Sassa S., Granick J. L., Granick S., Kappas A., Levere R. D. Studies in lead poisoning. I. Microanalysis of erythrocyte protoporphyrin levels by spectrophotometry in the detection of chronic lead intoxication in the subclinical range. Biochem Med. 1973 Aug;8(1):135–148. doi: 10.1016/0006-2944(73)90017-3. [DOI] [PubMed] [Google Scholar]
  14. Sassa S., Granick S., Bickers D. R., Bradlow H. L., Kappas A. A microassay for uroporphyrinogen I synthase, one of three abnormal enzyme activities in acute intermittent porphyria, and its application to the study of the genetics of this disease. Proc Natl Acad Sci U S A. 1974 Mar;71(3):732–736. doi: 10.1073/pnas.71.3.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sassa S., Granick S., Bickers D. R., Levere R. D., Kappas A. Studies on the inheritance of human erythrocyte delta-aminolevulinate dehydratase and uroporphyrinogen synthetase. Enzyme. 1973;16(1):326–333. doi: 10.1159/000459397. [DOI] [PubMed] [Google Scholar]
  16. Sassa S., Granick S., Kappas A. Effect of lead and genetic factors on heme biosynthesis in the human red cell. Ann N Y Acad Sci. 1975 Apr 15;244:419–440. doi: 10.1111/j.1749-6632.1975.tb41546.x. [DOI] [PubMed] [Google Scholar]
  17. Strand L. J., Felsher B. F., Redeker A. G., Marver H. S. Heme biosynthesis in intermittent acute prophyria: decreased hepatic conversion of porphobilinogen to porphyrins and increased delta aminolevulinic acid synthetase activity. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1315–1320. doi: 10.1073/pnas.67.3.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Strand L. J., Meyer U. A., Felsher B. F., Redeker A. G., Marver H. S. Decreased red cell uroporphyrinogen I synthetase activity in intermittent acute porphyria. J Clin Invest. 1972 Oct;51(10):2530–2536. doi: 10.1172/JCI107068. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES