Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Mar 1;181(3):857–866. doi: 10.1084/jem.181.3.857

Murine CD14 gene expression in vivo: extramyeloid synthesis and regulation by lipopolysaccharide

PMCID: PMC2191937  PMID: 7532683

Abstract

A murine model system was used to study the distribution and regulation of CD14 gene expression in vivo. Western blot analysis failed to detect CD14 in plasma from untreated CB6 (BALB/c x C57Bl6) mice, but showed markedly increased levels of CD14 in plasma from mice treated with lipopolysaccharide (LPS). Plasma levels of CD14 increased in a time- and dose-dependent manner, reaching a maximum between 8 and 16 h. Northern blot analysis of total RNA extracted from mouse tissues revealed low, but significant, levels of CD14 mRNA in many tissues of untreated animals with the highest levels in uterus, adipose tissue, and lung. After intraperitoneal injection of LPS, induction of CD14 gene expression was detected in all organs examined with the extent of induction varying between organs. Induction of CD14 mRNA was both time and dose dependent. Maximum induction in the heart and lung was observed 2-4 h after injection of LPS, while liver and kidney showed maximal induction between 8 and 16 h. In situ hybridization showed that CD14 mRNA was expressed in myeloid cells in many tissues, and that expression in these cells was upregulated by LPS. Unexpectedly, CD14 mRNA was also detected in other cells within tissues, including epithelial cells, and expression in these cell types also was upregulated by LPS. Immunochemical analysis revealed that CD14 antigen colocalized to the cytoplasm of cells expressing CD14 mRNA. These studies demonstrate that CD14 gene expression is not restricted to myeloid cells, and that the level of expression of CD14 is influenced by exposure to LPS.

Full Text

The Full Text of this article is available as a PDF (8.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer J., Lengyel G., Bauer T. M., Acs G., Gerok W. Regulation of interleukin-6 receptor expression in human monocytes and hepatocytes. FEBS Lett. 1989 May 22;249(1):27–30. doi: 10.1016/0014-5793(89)80008-0. [DOI] [PubMed] [Google Scholar]
  2. Bazil V., Strominger J. L. Shedding as a mechanism of down-modulation of CD14 on stimulated human monocytes. J Immunol. 1991 Sep 1;147(5):1567–1574. [PubMed] [Google Scholar]
  3. Bone R. C. The pathogenesis of sepsis. Ann Intern Med. 1991 Sep 15;115(6):457–469. doi: 10.7326/0003-4819-115-6-457. [DOI] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Dokter W. H., Borger P., Hendriks D., van der Horst I., Halie M. R., Vellenga E. Interleukin-4 (IL-4) receptor expression on human T cells is affected by different intracellular signaling pathways and by IL-4 at transcriptional and posttranscriptional level. Blood. 1992 Dec 1;80(11):2721–2728. [PubMed] [Google Scholar]
  6. Duchow J., Marchant A., Crusiaux A., Husson C., Alonso-Vega C., De Groote D., Neve P., Goldman M. Impaired phagocyte responses to lipopolysaccharide in paroxysmal nocturnal hemoglobinuria. Infect Immun. 1993 Oct;61(10):4280–4285. doi: 10.1128/iai.61.10.4280-4285.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eriksson A., Nistér M., Leveen P., Westermark B., Heldin C. H., Claesson-Welsh L. Induction of platelet-derived growth factor alpha- and beta-receptor mRNA and protein by platelet-derived growth factor BB. J Biol Chem. 1991 Nov 5;266(31):21138–21144. [PubMed] [Google Scholar]
  8. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  9. Ferrero E., Jiao D., Tsuberi B. Z., Tesio L., Rong G. W., Haziot A., Goyert S. M. Transgenic mice expressing human CD14 are hypersensitive to lipopolysaccharide. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2380–2384. doi: 10.1073/pnas.90.6.2380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Freudenberg M. A., Galanos C. The metabolic fate of endotoxins. Prog Clin Biol Res. 1988;272:63–75. [PubMed] [Google Scholar]
  11. Frey E. A., Miller D. S., Jahr T. G., Sundan A., Bazil V., Espevik T., Finlay B. B., Wright S. D. Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med. 1992 Dec 1;176(6):1665–1671. doi: 10.1084/jem.176.6.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Golenbock D. T., Liu Y., Millham F. H., Freeman M. W., Zoeller R. A. Surface expression of human CD14 in Chinese hamster ovary fibroblasts imparts macrophage-like responsiveness to bacterial endotoxin. J Biol Chem. 1993 Oct 15;268(29):22055–22059. [PubMed] [Google Scholar]
  13. Hussein M. O., Zipf W. B. Temporal relationship of the prolactin-dependent LH-induced LH receptor to the LH stimulus. J Cell Physiol. 1988 Jan;134(1):137–142. doi: 10.1002/jcp.1041340117. [DOI] [PubMed] [Google Scholar]
  14. Ikewaki N., Inoko H. Induction of CD14 antigen on the surface of U937 cells by an interleukin-6 autocrine mechanism after culture with formalin-killed gram-negative bacteria. Tissue Antigens. 1991 Sep;38(3):117–123. doi: 10.1111/j.1399-0039.1991.tb02024.x. [DOI] [PubMed] [Google Scholar]
  15. Keeton M., Eguchi Y., Sawdey M., Ahn C., Loskutoff D. J. Cellular localization of type 1 plasminogen activator inhibitor messenger RNA and protein in murine renal tissue. Am J Pathol. 1993 Jan;142(1):59–70. [PMC free article] [PubMed] [Google Scholar]
  16. Krüger C., Schütt C., Obertacke U., Joka T., Müller F. E., Knöller J., Köller M., König W., Schönfeld W. Serum CD14 levels in polytraumatized and severely burned patients. Clin Exp Immunol. 1991 Aug;85(2):297–301. doi: 10.1111/j.1365-2249.1991.tb05722.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Labeta M. O., Durieux J. J., Spagnoli G., Fernandez N., Wijdenes J., Herrmann R. CD14 and tolerance to lipopolysaccharide: biochemical and functional analysis. Immunology. 1993 Nov;80(3):415–423. [PMC free article] [PubMed] [Google Scholar]
  18. Marchant A., Duchow J., Delville J. P., Goldman M. Lipopolysaccharide induces up-regulation of CD14 molecule on monocytes in human whole blood. Eur J Immunol. 1992 Jun;22(6):1663–1665. doi: 10.1002/eji.1830220650. [DOI] [PubMed] [Google Scholar]
  19. Mathison J. C., Ulevitch R. J. The clearance, tissue distribution, and cellular localization of intravenously injected lipopolysaccharide in rabbits. J Immunol. 1979 Nov;123(5):2133–2143. [PubMed] [Google Scholar]
  20. Matsuura K., Ishida T., Setoguchi M., Higuchi Y., Akizuki S., Yamamoto S. Upregulation of mouse CD14 expression in Kupffer cells by lipopolysaccharide. J Exp Med. 1994 May 1;179(5):1671–1676. doi: 10.1084/jem.179.5.1671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miller F. D., Mathew T. C., Toma J. G. Regulation of nerve growth factor receptor gene expression by nerve growth factor in the developing peripheral nervous system. J Cell Biol. 1991 Jan;112(2):303–312. doi: 10.1083/jcb.112.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morrison D. C., Ulevitch R. J. The effects of bacterial endotoxins on host mediation systems. A review. Am J Pathol. 1978 Nov;93(2):526–618. [PMC free article] [PubMed] [Google Scholar]
  23. Nilsson A., Carlsson B., Mathews L., Isaksson O. G. Growth hormone regulation of the growth hormone receptor mRNA in cultured rat epiphyseal chondrocytes. Mol Cell Endocrinol. 1990 May 7;70(3):237–246. doi: 10.1016/0303-7207(90)90214-s. [DOI] [PubMed] [Google Scholar]
  24. Pugin J., Heumann I. D., Tomasz A., Kravchenko V. V., Akamatsu Y., Nishijima M., Glauser M. P., Tobias P. S., Ulevitch R. J. CD14 is a pattern recognition receptor. Immunity. 1994 Sep;1(6):509–516. doi: 10.1016/1074-7613(94)90093-0. [DOI] [PubMed] [Google Scholar]
  25. Pugin J., Schürer-Maly C. C., Leturcq D., Moriarty A., Ulevitch R. J., Tobias P. S. Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2744–2748. doi: 10.1073/pnas.90.7.2744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Read M. A., Cordle S. R., Veach R. A., Carlisle C. D., Hawiger J. Cell-free pool of CD14 mediates activation of transcription factor NF-kappa B by lipopolysaccharide in human endothelial cells. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9887–9891. doi: 10.1073/pnas.90.21.9887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Saito H., Kasayama S., Kouhara H., Matsumoto K., Sato B. Up-regulation of fibroblast growth factor (FGF) receptor mRNA levels by basic FGF or testosterone in androgen-sensitive mouse mammary tumor cells. Biochem Biophys Res Commun. 1991 Jan 15;174(1):136–141. doi: 10.1016/0006-291x(91)90496-t. [DOI] [PubMed] [Google Scholar]
  28. Setoguchi M., Nasu N., Yoshida S., Higuchi Y., Akizuki S., Yamamoto S. Mouse and human CD14 (myeloid cell-specific leucine-rich glycoprotein) primary structure deduced from cDNA clones. Biochim Biophys Acta. 1989 Jul 7;1008(2):213–222. doi: 10.1016/0167-4781(80)90012-3. [DOI] [PubMed] [Google Scholar]
  29. Tilly J. L., LaPolt P. S., Hsueh A. J. Hormonal regulation of follicle-stimulating hormone receptor messenger ribonucleic acid levels in cultured rat granulosa cells. Endocrinology. 1992 Mar;130(3):1296–1302. doi: 10.1210/endo.130.3.1311235. [DOI] [PubMed] [Google Scholar]
  30. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ulevitch R. J. Recognition of bacterial endotoxins by receptor-dependent mechanisms. Adv Immunol. 1993;53:267–289. doi: 10.1016/s0065-2776(08)60502-7. [DOI] [PubMed] [Google Scholar]
  32. Weingarten R., Sklar L. A., Mathison J. C., Omidi S., Ainsworth T., Simon S., Ulevitch R. J., Tobias P. S. Interactions of lipopolysaccharide with neutrophils in blood via CD14. J Leukoc Biol. 1993 May;53(5):518–524. doi: 10.1002/jlb.53.5.518. [DOI] [PubMed] [Google Scholar]
  33. Wright S. D., Ramos R. A., Hermanowski-Vosatka A., Rockwell P., Detmers P. A. Activation of the adhesive capacity of CR3 on neutrophils by endotoxin: dependence on lipopolysaccharide binding protein and CD14. J Exp Med. 1991 May 1;173(5):1281–1286. doi: 10.1084/jem.173.5.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wright S. D., Ramos R. A., Patel M., Miller D. S. Septin: a factor in plasma that opsonizes lipopolysaccharide-bearing particles for recognition by CD14 on phagocytes. J Exp Med. 1992 Sep 1;176(3):719–727. doi: 10.1084/jem.176.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., Mathison J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990 Sep 21;249(4975):1431–1433. doi: 10.1126/science.1698311. [DOI] [PubMed] [Google Scholar]
  36. Wright S. D., Tobias P. S., Ulevitch R. J., Ramos R. A. Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages. J Exp Med. 1989 Oct 1;170(4):1231–1241. doi: 10.1084/jem.170.4.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ziegler-Heitbrock H. W., Ulevitch R. J. CD14: cell surface receptor and differentiation marker. Immunol Today. 1993 Mar;14(3):121–125. doi: 10.1016/0167-5699(93)90212-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES