Abstract
Although CD44 is expressed on a wide variety of cell types, few of them use it to recognize the ligand hyaluronan (HA). A glycosylation- defective clone of Chinese hamster ovary cells (Lec 8) bound HA, demonstrating that complete processing of glycoproteins with addition of a full complement of sialic acid is not required. On the contrary, subsequent findings revealed that complex sugars on CD44 can actually inhibit ligand recognition. Two subclones of wild-type Chinese hamster ovary cells with similar amounts of surface CD44 were isolated on the basis of HA binding and found to differ with respect to CD44 size as well as staining with fluorescent lectins. Treatment of the nonbinding clone with tunicamycin reduced the size of the protein and allowed the cells to recognize HA via CD44. This function was also induced by treatment with deglycosylating enzymes (either a mixture of endoglycosidase F and N-glycosidase F or neuraminidase alone). A possible role for glycosylation in regulation of adhesion was then sought with a series of normal and transformed murine cells. Disruption of glycosylation or treatment with deglycosylating enzymes did not induce ligand binding in an interleukin 7-dependent pre-B cell line, and splenic B cells also appeared to be in an inactive state. Some normal B cells acquired the ability to recognize HA after stimulation with lipopolysaccharide or interleukin 5 and had distinctive surface characteristics (loss of immunoglobulin D and acquisition of CD43). An additional subset of activated cells might have been in a transitional state, because the cells bound ligand after neuraminidase treatment. The ligand-binding ability of a purified CD44-immunoglobulin fusion protein dramatically increased after neuraminidase treatment. Thus, differential glycosylation of this molecule is sufficient to influence its recognition function. Cell adhesion involving HA can be regulated by multiple mechanisms, one of which involves variable glycosylation of CD44.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ardman B., Sikorski M. A., Staunton D. E. CD43 interferes with T-lymphocyte adhesion. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5001–5005. doi: 10.1073/pnas.89.11.5001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aruffo A., Stamenkovic I., Melnick M., Underhill C. B., Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990 Jun 29;61(7):1303–1313. doi: 10.1016/0092-8674(90)90694-a. [DOI] [PubMed] [Google Scholar]
- Bartolazzi A., Peach R., Aruffo A., Stamenkovic I. Interaction between CD44 and hyaluronate is directly implicated in the regulation of tumor development. J Exp Med. 1994 Jul 1;180(1):53–66. doi: 10.1084/jem.180.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bazil V., Horejsí V. Shedding of the CD44 adhesion molecule from leukocytes induced by anti-CD44 monoclonal antibody simulating the effect of a natural receptor ligand. J Immunol. 1992 Aug 1;149(3):747–753. [PubMed] [Google Scholar]
- Bevilacqua M., Butcher E., Furie B., Furie B., Gallatin M., Gimbrone M., Harlan J., Kishimoto K., Lasky L., McEver R. Selectins: a family of adhesion receptors. Cell. 1991 Oct 18;67(2):233–233. doi: 10.1016/0092-8674(91)90174-w. [DOI] [PubMed] [Google Scholar]
- Bourguignon L. Y., Kalomiris E. L., Lokeshwar V. B. Acylation of the lymphoma transmembrane glycoprotein, GP85, may be required for GP85-ankyrin interaction. J Biol Chem. 1991 Jun 25;266(18):11761–11765. [PubMed] [Google Scholar]
- Briles E. B., Li E., Kornfeld S. Isolation of wheat germ agglutinin-resistant clones of Chinese hamster ovary cells deficient in membrane sialic acid and galactose. J Biol Chem. 1977 Feb 10;252(3):1107–1116. [PubMed] [Google Scholar]
- Brown T. A., Bouchard T., St John T., Wayner E., Carter W. G. Human keratinocytes express a new CD44 core protein (CD44E) as a heparan-sulfate intrinsic membrane proteoglycan with additional exons. J Cell Biol. 1991 Apr;113(1):207–221. doi: 10.1083/jcb.113.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Camp R. L., Kraus T. A., Puré E. Variations in the cytoskeletal interaction and posttranslational modification of the CD44 homing receptor in macrophages. J Cell Biol. 1991 Dec;115(5):1283–1292. doi: 10.1083/jcb.115.5.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campanero M. R., Pulido R., Alonso J. L., Pivel J. P., Pimentel-Muiños F. X., Fresno M., Sánchez-Madrid F. Down-regulation by tumor necrosis factor-alpha of neutrophil cell surface expression of the sialophorin CD43 and the hyaluronate receptor CD44 through a proteolytic mechanism. Eur J Immunol. 1991 Dec;21(12):3045–3048. doi: 10.1002/eji.1830211222. [DOI] [PubMed] [Google Scholar]
- Diamond M. S., Staunton D. E., Marlin S. D., Springer T. A. Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell. 1991 Jun 14;65(6):961–971. doi: 10.1016/0092-8674(91)90548-d. [DOI] [PubMed] [Google Scholar]
- Do S. I., Cummings R. D. The hamster transferrin receptor contains Ser/Thr-linked oligosaccharides: use of a lectin-resistant CHO cell line to identify glycoproteins containing these linkages. J Biochem Biophys Methods. 1992 Jun;24(3-4):153–165. doi: 10.1016/0165-022x(94)90068-x. [DOI] [PubMed] [Google Scholar]
- Dougherty G. J., Cooper D. L., Memory J. F., Chiu R. K. Ligand binding specificity of alternatively spliced CD44 isoforms. Recognition and binding of hyaluronan by CD44R1. J Biol Chem. 1994 Mar 25;269(12):9074–9078. [PubMed] [Google Scholar]
- Dustin M. L., Springer T. A. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature. 1989 Oct 19;341(6243):619–624. doi: 10.1038/341619a0. [DOI] [PubMed] [Google Scholar]
- Guo Y. J., Lin S. C., Wang J. H., Bigby M., Sy M. S. Palmitoylation of CD44 interferes with CD3-mediated signaling in human T lymphocytes. Int Immunol. 1994 Feb;6(2):213–221. doi: 10.1093/intimm/6.2.213. [DOI] [PubMed] [Google Scholar]
- Guthridge J. M., Kaplan A. M., Cohen D. A. Regulation of B cell:T cell interactions: potential involvement of an endogenous B cell sialidase. Immunol Invest. 1994 Nov;23(6-7):393–411. doi: 10.3109/08820139409066834. [DOI] [PubMed] [Google Scholar]
- Hathcock K. S., Hirano H., Murakami S., Hodes R. J. CD44 expression on activated B cells. Differential capacity for CD44-dependent binding to hyaluronic acid. J Immunol. 1993 Dec 15;151(12):6712–6722. [PubMed] [Google Scholar]
- He Q., Lesley J., Hyman R., Ishihara K., Kincade P. W. Molecular isoforms of murine CD44 and evidence that the membrane proximal domain is not critical for hyaluronate recognition. J Cell Biol. 1992 Dec;119(6):1711–1719. doi: 10.1083/jcb.119.6.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman S., Edelman G. M. Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5762–5766. doi: 10.1073/pnas.80.18.5762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyman R., Lesley J., Schulte R. Somatic cell mutants distinguish CD44 expression and hyaluronic acid binding. Immunogenetics. 1991;33(5-6):392–395. doi: 10.1007/BF00216699. [DOI] [PubMed] [Google Scholar]
- Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
- Ishihara K., Wood W. J., Jr, Damore M., Hermanson G. G., Wall R., Kincade P. W. B29 gene products complex with immunoglobulins on B lymphocytes. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):633–637. doi: 10.1073/pnas.89.2.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jalkanen S., Jalkanen M., Bargatze R., Tammi M., Butcher E. C. Biochemical properties of glycoproteins involved in lymphocyte recognition of high endothelial venules in man. J Immunol. 1988 Sep 1;141(5):1615–1623. [PubMed] [Google Scholar]
- Jalkanen S., Jalkanen M. Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. J Cell Biol. 1992 Feb;116(3):817–825. doi: 10.1083/jcb.116.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones A. T., Federsppiel B., Ellies L. G., Williams M. J., Burgener R., Duronio V., Smith C. A., Takei F., Ziltener H. J. Characterization of the activation-associated isoform of CD43 on murine T lymphocytes. J Immunol. 1994 Oct 15;153(8):3426–3439. [PubMed] [Google Scholar]
- Kaisho T., Ishikawa J., Oritani K., Inazawa J., Tomizawa H., Muraoka O., Ochi T., Hirano T. BST-1, a surface molecule of bone marrow stromal cell lines that facilitates pre-B-cell growth. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5325–5329. doi: 10.1073/pnas.91.12.5325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalomiris E. L., Bourguignon L. Y. Lymphoma protein kinase C is associated with the transmembrane glycoprotein, GP85, and may function in GP85-ankyrin binding. J Biol Chem. 1989 May 15;264(14):8113–8119. [PubMed] [Google Scholar]
- Katoh S., Bendig M. M., Kanai Y., Shultz L. D., Hitoshi Y., Takatsu K., Tominaga A. Maintenance of CD5+ B cells at an early developmental stage by interleukin-5: evidence from immunoglobulin gene usage in interleukin-5 transgenic mice. DNA Cell Biol. 1993 Jul-Aug;12(6):481–491. doi: 10.1089/dna.1993.12.481. [DOI] [PubMed] [Google Scholar]
- Katoh S., McCarthy J. B., Kincade P. W. Characterization of soluble CD44 in the circulation of mice. Levels are affected by immune activity and tumor growth. J Immunol. 1994 Oct 15;153(8):3440–3449. [PubMed] [Google Scholar]
- Kawaguchi T., Matsumoto I., Osawa T. Studies on hemagglutinins from Maackia amurensis seeds. J Biol Chem. 1974 May 10;249(9):2786–2792. [PubMed] [Google Scholar]
- Kearse K. P., Cassatt D. R., Kaplan A. M., Cohen D. A. The requirement for surface Ig signaling as a prerequisite for T cell:B cell interactions. A possible role for desialylation. J Immunol. 1988 Mar 15;140(6):1770–1778. [PubMed] [Google Scholar]
- Kelm S., Pelz A., Schauer R., Filbin M. T., Tang S., de Bellard M. E., Schnaar R. L., Mahoney J. A., Hartnell A., Bradfield P. Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr Biol. 1994 Nov 1;4(11):965–972. doi: 10.1016/s0960-9822(00)00220-7. [DOI] [PubMed] [Google Scholar]
- Labarrière N., Piau J. P., Otry C., Denis M., Lustenberger P., Meflah K., Le Pendu J. H blood group antigen carried by CD44V modulates tumorigenicity of rat colon carcinoma cells. Cancer Res. 1994 Dec 1;54(23):6275–6281. [PubMed] [Google Scholar]
- Lesley J., English N., Perschl A., Gregoroff J., Hyman R. Variant cell lines selected for alterations in the function of the hyaluronan receptor CD44 show differences in glycosylation. J Exp Med. 1995 Aug 1;182(2):431–437. doi: 10.1084/jem.182.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lesley J., He Q., Miyake K., Hamann A., Hyman R., Kincade P. W. Requirements for hyaluronic acid binding by CD44: a role for the cytoplasmic domain and activation by antibody. J Exp Med. 1992 Jan 1;175(1):257–266. doi: 10.1084/jem.175.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lesley J., Howes N., Perschl A., Hyman R. Hyaluronan binding function of CD44 is transiently activated on T cells during an in vivo immune response. J Exp Med. 1994 Jul 1;180(1):383–387. doi: 10.1084/jem.180.1.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lesley J., Hyman R., Kincade P. W. CD44 and its interaction with extracellular matrix. Adv Immunol. 1993;54:271–335. doi: 10.1016/s0065-2776(08)60537-4. [DOI] [PubMed] [Google Scholar]
- Lesley J., Kincade P. W., Hyman R. Antibody-induced activation of the hyaluronan receptor function of CD44 requires multivalent binding by antibody. Eur J Immunol. 1993 Aug;23(8):1902–1909. doi: 10.1002/eji.1830230826. [DOI] [PubMed] [Google Scholar]
- Lokeshwar V. B., Bourguignon L. Y. Post-translational protein modification and expression of ankyrin-binding site(s) in GP85 (Pgp-1/CD44) and its biosynthetic precursors during T-lymphoma membrane biosynthesis. J Biol Chem. 1991 Sep 25;266(27):17983–17989. [PubMed] [Google Scholar]
- Mebius R. E., Dowbenko D., Williams A., Fennie C., Lasky L. A., Watson S. R. Expression of GlyCAM-1, an endothelial ligand for L-selectin, is affected by afferent lymphatic flow. J Immunol. 1993 Dec 15;151(12):6769–6776. [PubMed] [Google Scholar]
- Miyake K., Underhill C. B., Lesley J., Kincade P. W. Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J Exp Med. 1990 Jul 1;172(1):69–75. doi: 10.1084/jem.172.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murakami S., Miyake K., Abe R., Kincade P. W., Hodes R. J. Characterization of autoantibody-secreting B cells in mice undergoing stimulatory (chronic) graft-versus-host reactions. Identification of a CD44hi population that binds specifically to hyaluronate. J Immunol. 1991 Mar 1;146(5):1422–1427. [PubMed] [Google Scholar]
- Murakami S., Miyake K., June C. H., Kincade P. W., Hodes R. J. IL-5 induces a Pgp-1 (CD44) bright B cell subpopulation that is highly enriched in proliferative and Ig secretory activity and binds to hyaluronate. J Immunol. 1990 Dec 1;145(11):3618–3627. [PubMed] [Google Scholar]
- O'Toole T. E., Loftus J. C., Du X. P., Glass A. A., Ruggeri Z. M., Shattil S. J., Plow E. F., Ginsberg M. H. Affinity modulation of the alpha IIb beta 3 integrin (platelet GPIIb-IIIa) is an intrinsic property of the receptor. Cell Regul. 1990 Nov;1(12):883–893. doi: 10.1091/mbc.1.12.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peach R. J., Hollenbaugh D., Stamenkovic I., Aruffo A. Identification of hyaluronic acid binding sites in the extracellular domain of CD44. J Cell Biol. 1993 Jul;122(1):257–264. doi: 10.1083/jcb.122.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Picker L. J., Warnock R. A., Burns A. R., Doerschuk C. M., Berg E. L., Butcher E. C. The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell. 1991 Sep 6;66(5):921–933. doi: 10.1016/0092-8674(91)90438-5. [DOI] [PubMed] [Google Scholar]
- Rosen S. D., Chi S. I., True D. D., Singer M. S., Yednock T. A. Intravenously injected sialidase inactivates attachment sites for lymphocytes on high endothelial venules. J Immunol. 1989 Mar 15;142(6):1895–1902. [PubMed] [Google Scholar]
- Smith D. F., Larsen R. D., Mattox S., Lowe J. B., Cummings R. D. Transfer and expression of a murine UDP-Gal:beta-D-Gal-alpha 1,3-galactosyltransferase gene in transfected Chinese hamster ovary cells. Competition reactions between the alpha 1,3-galactosyltransferase and the endogenous alpha 2,3-sialyltransferase. J Biol Chem. 1990 Apr 15;265(11):6225–6234. [PubMed] [Google Scholar]
- Stamenkovic I., Aruffo A., Amiot M., Seed B. The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. EMBO J. 1991 Feb;10(2):343–348. doi: 10.1002/j.1460-2075.1991.tb07955.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanley P. Membrane mutants of animal cells: rapid identification of those with a primary defect in glycosylation. Mol Cell Biol. 1985 May;5(5):923–929. doi: 10.1128/mcb.5.5.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoolman L. M., Yednock T. A., Rosen S. D. Homing receptors on human and rodent lymphocytes--evidence for a conserved carbohydrate-binding specificity. Blood. 1987 Dec;70(6):1842–1850. [PubMed] [Google Scholar]
- Sutherland D. R., Abdullah K. M., Cyopick P., Mellors A. Cleavage of the cell-surface O-sialoglycoproteins CD34, CD43, CD44, and CD45 by a novel glycoprotease from Pasteurella haemolytica. J Immunol. 1992 Mar 1;148(5):1458–1464. [PubMed] [Google Scholar]
- Thomas L., Byers H. R., Vink J., Stamenkovic I. CD44H regulates tumor cell migration on hyaluronate-coated substrate. J Cell Biol. 1992 Aug;118(4):971–977. doi: 10.1083/jcb.118.4.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toyama-Sorimachi N., Miyasaka M. A novel ligand for CD44 is sulfated proteoglycan. Int Immunol. 1994 Apr;6(4):655–660. doi: 10.1093/intimm/6.4.655. [DOI] [PubMed] [Google Scholar]
- True D. D., Singer M. S., Lasky L. A., Rosen S. D. Requirement for sialic acid on the endothelial ligand of a lymphocyte homing receptor. J Cell Biol. 1990 Dec;111(6 Pt 1):2757–2764. doi: 10.1083/jcb.111.6.2757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsukita S., Oishi K., Sato N., Sagara J., Kawai A., Tsukita S. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J Cell Biol. 1994 Jul;126(2):391–401. doi: 10.1083/jcb.126.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Umland S. P., Go N. F., Cupp J. E., Howard M. Responses of B cells from autoimmune mice to IL-5. J Immunol. 1989 Mar 1;142(5):1528–1535. [PubMed] [Google Scholar]
- Wu X., Miyake K., Medina K. L., Kincade P. W., Gimble J. M. Recognition of murine integrin beta 1 by a rat anti-stromal cell monoclonal antibody. Hybridoma. 1994 Oct;13(5):409–416. doi: 10.1089/hyb.1994.13.409. [DOI] [PubMed] [Google Scholar]
- Yonemura S., Nagafuchi A., Sato N., Tsukita S. Concentration of an integral membrane protein, CD43 (leukosialin, sialophorin), in the cleavage furrow through the interaction of its cytoplasmic domain with actin-based cytoskeletons. J Cell Biol. 1993 Jan;120(2):437–449. doi: 10.1083/jcb.120.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zheng M., Fang H., Hakomori S. Functional role of N-glycosylation in alpha 5 beta 1 integrin receptor. De-N-glycosylation induces dissociation or altered association of alpha 5 and beta 1 subunits and concomitant loss of fibronectin binding activity. J Biol Chem. 1994 Apr 22;269(16):12325–12331. [PubMed] [Google Scholar]
- Zhou D. F., Ding J. F., Picker L. J., Bargatze R. F., Butcher E. C., Goeddel D. V. Molecular cloning and expression of Pgp-1. The mouse homolog of the human H-CAM (Hermes) lymphocyte homing receptor. J Immunol. 1989 Nov 15;143(10):3390–3395. [PubMed] [Google Scholar]
- Zhou Q., Moore K. L., Smith D. F., Varki A., McEver R. P., Cummings R. D. The selectin GMP-140 binds to sialylated, fucosylated lactosaminoglycans on both myeloid and nonmyeloid cells. J Cell Biol. 1991 Oct;115(2):557–564. doi: 10.1083/jcb.115.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]