Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Nov 1;182(5):1461–1468. doi: 10.1084/jem.182.5.1461

Interleukin (IL)-6 induction of osteoclast differentiation depends on IL-6 receptors expressed on osteoblastic cells but not on osteoclast progenitors

PMCID: PMC2192181  PMID: 7595216

Abstract

We reported that interleukin (IL) 6 alone cannot induce osteoclast formation in cocultures of mouse bone marrow and osteoblastic cells, but soluble IL-6 receptor (IL-6R) strikingly triggered osteoclast formation induced by IL-6. In this study, we examined the mechanism of osteoclast formation by IL-6 and related cytokines through the interaction between osteoblastic cells and osteoclast progenitors. When dexamethasone was added to the cocultures, IL-6 could stimulate osteoclast formation without the help of soluble IL-6R. Osteoblastic cells expressed a very low level of IL-6R mRNA, whereas fresh mouse spleen and bone marrow cells, both of which are considered to be osteoclast progenitors, constitutively expressed relatively high levels of IL-6R mRNA. Treatment of osteoblastic cells with dexamethasone induced a marked increase in the expression of IL-6R mRNA. By immunoblotting with antiphosphotyrosine antibody, IL-6 did not tyrosine- phosphorylate a protein with a molecular mass of 130 kD in osteoblastic cells but did so in dexamethasone-pretreated osteoblastic cells. Osteoblastic cells from transgenic mice constitutively expressing human IL-6R could support osteoclast development in the presence of human IL- 6 alone in cocultures with normal spleen cells. In contrast, osteoclast progenitors in spleen cells from transgenic mice overexpressing human IL-6R were not able to differentiate into osteoclasts in response to IL- 6 in cocultures with normal osteoblastic cells. These results clearly indicate that the ability of IL-6 to induce osteoclast differentiation depends on signal transduction mediated by IL-6R expressed on osteoblastic cells but not on osteoclast progenitors.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akatsu T., Takahashi N., Udagawa N., Imamura K., Yamaguchi A., Sato K., Nagata N., Suda T. Role of prostaglandins in interleukin-1-induced bone resorption in mice in vitro. J Bone Miner Res. 1991 Feb;6(2):183–189. doi: 10.1002/jbmr.5650060212. [DOI] [PubMed] [Google Scholar]
  2. Bennett A., Chen T., Feldman D., Hintz R. L., Rosenfeld R. G. Characterization of insulin-like growth factor I receptors on cultured rat bone cells: regulation of receptor concentration by glucocorticoids. Endocrinology. 1984 Oct;115(4):1577–1583. doi: 10.1210/endo-115-4-1577. [DOI] [PubMed] [Google Scholar]
  3. Black K., Garrett I. R., Mundy G. R. Chinese hamster ovarian cells transfected with the murine interleukin-6 gene cause hypercalcemia as well as cachexia, leukocytosis and thrombocytosis in tumor-bearing nude mice. Endocrinology. 1991 May;128(5):2657–2659. doi: 10.1210/endo-128-5-2657. [DOI] [PubMed] [Google Scholar]
  4. Chambers T. J., Owens J. M., Hattersley G., Jat P. S., Noble M. D. Generation of osteoclast-inductive and osteoclastogenic cell lines from the H-2KbtsA58 transgenic mouse. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5578–5582. doi: 10.1073/pnas.90.12.5578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chambers T. J. The cellular basis of bone resorption. Clin Orthop Relat Res. 1980 Sep;(151):283–293. [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Collins S., Caron M. G., Lefkowitz R. J. Beta-adrenergic receptors in hamster smooth muscle cells are transcriptionally regulated by glucocorticoids. J Biol Chem. 1988 Jul 5;263(19):9067–9070. [PubMed] [Google Scholar]
  8. Gimble J. M., Wanker F., Wang C. S., Bass H., Wu X., Kelly K., Yancopoulos G. D., Hill M. R. Regulation of bone marrow stromal cell differentiation by cytokines whose receptors share the gp130 protein. J Cell Biochem. 1994 Jan;54(1):122–133. doi: 10.1002/jcb.240540113. [DOI] [PubMed] [Google Scholar]
  9. Gronowicz G., McCarthy M. B., Raisz L. G. Glucocorticoids stimulate resorption in fetal rat parietal bones in vitro. J Bone Miner Res. 1990 Dec;5(12):1223–1230. doi: 10.1002/jbmr.5650051206. [DOI] [PubMed] [Google Scholar]
  10. Hattersley G., Chambers T. J. Calcitonin receptors as markers for osteoclastic differentiation: correlation between generation of bone-resorptive cells and cells that express calcitonin receptors in mouse bone marrow cultures. Endocrinology. 1989 Sep;125(3):1606–1612. doi: 10.1210/endo-125-3-1606. [DOI] [PubMed] [Google Scholar]
  11. Hilton D. J., Hilton A. A., Raicevic A., Rakar S., Harrison-Smith M., Gough N. M., Begley C. G., Metcalf D., Nicola N. A., Willson T. A. Cloning of a murine IL-11 receptor alpha-chain; requirement for gp130 for high affinity binding and signal transduction. EMBO J. 1994 Oct 17;13(20):4765–4775. doi: 10.1002/j.1460-2075.1994.tb06802.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hirota H., Yoshida K., Kishimoto T., Taga T. Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4862–4866. doi: 10.1073/pnas.92.11.4862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ikegame M., Rakopoulos M., Zhou H., Houssami S., Martin T. J., Moseley J. M., Findlay D. M. Calcitonin receptor isoforms in mouse and rat osteoclasts. J Bone Miner Res. 1995 Jan;10(1):59–65. doi: 10.1002/jbmr.5650100110. [DOI] [PubMed] [Google Scholar]
  14. Ishimi Y., Miyaura C., Jin C. H., Akatsu T., Abe E., Nakamura Y., Yamaguchi A., Yoshiki S., Matsuda T., Hirano T. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol. 1990 Nov 15;145(10):3297–3303. [PubMed] [Google Scholar]
  15. Jilka R. L., Hangoc G., Girasole G., Passeri G., Williams D. C., Abrams J. S., Boyce B., Broxmeyer H., Manolagas S. C. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science. 1992 Jul 3;257(5066):88–91. doi: 10.1126/science.1621100. [DOI] [PubMed] [Google Scholar]
  16. Kalu D. N. Proliferation of tartrate-resistant acid phosphatase positive multinucleate cells in ovariectomized animals. Proc Soc Exp Biol Med. 1990 Oct;195(1):70–74. doi: 10.3181/00379727-195-43120. [DOI] [PubMed] [Google Scholar]
  17. Kawashima I., Ohsumi J., Mita-Honjo K., Shimoda-Takano K., Ishikawa H., Sakakibara S., Miyadai K., Takiguchi Y. Molecular cloning of cDNA encoding adipogenesis inhibitory factor and identity with interleukin-11. FEBS Lett. 1991 Jun 3;283(2):199–202. doi: 10.1016/0014-5793(91)80587-s. [DOI] [PubMed] [Google Scholar]
  18. Keller D. C., Du X. X., Srour E. F., Hoffman R., Williams D. A. Interleukin-11 inhibits adipogenesis and stimulates myelopoiesis in human long-term marrow cultures. Blood. 1993 Sep 1;82(5):1428–1435. [PubMed] [Google Scholar]
  19. Kishimoto T., Akira S., Taga T. Interleukin-6 and its receptor: a paradigm for cytokines. Science. 1992 Oct 23;258(5082):593–597. doi: 10.1126/science.1411569. [DOI] [PubMed] [Google Scholar]
  20. Kishimoto T., Taga T., Akira S. Cytokine signal transduction. Cell. 1994 Jan 28;76(2):253–262. doi: 10.1016/0092-8674(94)90333-6. [DOI] [PubMed] [Google Scholar]
  21. Kurihara N., Suda T., Miura Y., Nakauchi H., Kodama H., Hiura K., Hakeda Y., Kumegawa M. Generation of osteoclasts from isolated hematopoietic progenitor cells. Blood. 1989 Sep;74(4):1295–1302. [PubMed] [Google Scholar]
  22. Lee M. Y., Eyre D. R., Osborne W. R. Isolation of a murine osteoclast colony-stimulating factor. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8500–8504. doi: 10.1073/pnas.88.19.8500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Littlewood A. J., Aarden L. A., Evans D. B., Russell R. G., Gowen M. Human osteoblastlike cells do not respond to interleukin-6. J Bone Miner Res. 1991 Feb;6(2):141–148. doi: 10.1002/jbmr.5650060207. [DOI] [PubMed] [Google Scholar]
  24. Littlewood A. J., Russell J., Harvey G. R., Hughes D. E., Russell R. G., Gowen M. The modulation of the expression of IL-6 and its receptor in human osteoblasts in vitro. Endocrinology. 1991 Sep;129(3):1513–1520. doi: 10.1210/endo-129-3-1513. [DOI] [PubMed] [Google Scholar]
  25. Löwik C. W., van der Pluijm G., Bloys H., Hoekman K., Bijvoet O. L., Aarden L. A., Papapoulos S. E. Parathyroid hormone (PTH) and PTH-like protein (PLP) stimulate interleukin-6 production by osteogenic cells: a possible role of interleukin-6 in osteoclastogenesis. Biochem Biophys Res Commun. 1989 Aug 15;162(3):1546–1552. doi: 10.1016/0006-291x(89)90851-6. [DOI] [PubMed] [Google Scholar]
  26. Lütticken C., Wegenka U. M., Yuan J., Buschmann J., Schindler C., Ziemiecki A., Harpur A. G., Wilks A. F., Yasukawa K., Taga T. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science. 1994 Jan 7;263(5143):89–92. doi: 10.1126/science.8272872. [DOI] [PubMed] [Google Scholar]
  27. Martin T. J., Ng K. W. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. J Cell Biochem. 1994 Nov;56(3):357–366. doi: 10.1002/jcb.240560312. [DOI] [PubMed] [Google Scholar]
  28. Mundy G. R., Rick M. E., Turcotte R., Kowalski M. A. Pathogenesis of hypercalcemia in lymphosarcoma cell leukemia. Role of an osteoclast activating factor-like substance and a mechanism of action for glucocorticoid therapy. Am J Med. 1978 Oct;65(4):600–606. doi: 10.1016/0002-9343(78)90847-1. [DOI] [PubMed] [Google Scholar]
  29. Neuhaus H., Bettenhausen B., Bilinski P., Simon-Chazottes D., Guénet J. L., Gossler A. Etl2, a novel putative type-I cytokine receptor expressed during mouse embryogenesis at high levels in skin and cells with skeletogenic potential. Dev Biol. 1994 Dec;166(2):531–542. doi: 10.1006/dbio.1994.1335. [DOI] [PubMed] [Google Scholar]
  30. Niwa H., Yamamura K., Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991 Dec 15;108(2):193–199. doi: 10.1016/0378-1119(91)90434-d. [DOI] [PubMed] [Google Scholar]
  31. Ohsaki Y., Takahashi S., Scarcez T., Demulder A., Nishihara T., Williams R., Roodman G. D. Evidence for an autocrine/paracrine role for interleukin-6 in bone resorption by giant cells from giant cell tumors of bone. Endocrinology. 1992 Nov;131(5):2229–2234. doi: 10.1210/endo.131.5.1425421. [DOI] [PubMed] [Google Scholar]
  32. Paul S. R., Bennett F., Calvetti J. A., Kelleher K., Wood C. R., O'Hara R. M., Jr, Leary A. C., Sibley B., Clark S. C., Williams D. A. Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7512–7516. doi: 10.1073/pnas.87.19.7512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Poli V., Balena R., Fattori E., Markatos A., Yamamoto M., Tanaka H., Ciliberto G., Rodan G. A., Costantini F. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 1994 Mar 1;13(5):1189–1196. doi: 10.1002/j.1460-2075.1994.tb06368.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rodan G. A., Martin T. J. Role of osteoblasts in hormonal control of bone resorption--a hypothesis. Calcif Tissue Int. 1981;33(4):349–351. doi: 10.1007/BF02409454. [DOI] [PubMed] [Google Scholar]
  35. Saito T., Yasukawa K., Suzuki H., Futatsugi K., Fukunaga T., Yokomizo C., Koishihara Y., Fukui H., Ohsugi Y., Yawata H. Preparation of soluble murine IL-6 receptor and anti-murine IL-6 receptor antibodies. J Immunol. 1991 Jul 1;147(1):168–173. [PubMed] [Google Scholar]
  36. Snyers L., De Wit L., Content J. Glucocorticoid up-regulation of high-affinity interleukin 6 receptors on human epithelial cells. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2838–2842. doi: 10.1073/pnas.87.7.2838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stahl N., Boulton T. G., Farruggella T., Ip N. Y., Davis S., Witthuhn B. A., Quelle F. W., Silvennoinen O., Barbieri G., Pellegrini S. Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science. 1994 Jan 7;263(5143):92–95. doi: 10.1126/science.8272873. [DOI] [PubMed] [Google Scholar]
  38. Suda T., Takahashi N., Martin T. J. Modulation of osteoclast differentiation. Endocr Rev. 1992 Feb;13(1):66–80. doi: 10.1210/edrv-13-1-66. [DOI] [PubMed] [Google Scholar]
  39. Suematsu S., Matsuda T., Aozasa K., Akira S., Nakano N., Ohno S., Miyazaki J., Yamamura K., Hirano T., Kishimoto T. IgG1 plasmacytosis in interleukin 6 transgenic mice. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7547–7551. doi: 10.1073/pnas.86.19.7547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sugimoto T., Kanatani M., Kaji H., Yamaguchi T., Fukase M., Chihara K. Second messenger signaling of PTH- and PTHRP-stimulated osteoclast-like cell formation from hemopoietic blast cells. Am J Physiol. 1993 Sep;265(3 Pt 1):E367–E373. doi: 10.1152/ajpendo.1993.265.3.E367. [DOI] [PubMed] [Google Scholar]
  41. Taga T., Hibi M., Hirata Y., Yamasaki K., Yasukawa K., Matsuda T., Hirano T., Kishimoto T. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell. 1989 Aug 11;58(3):573–581. doi: 10.1016/0092-8674(89)90438-8. [DOI] [PubMed] [Google Scholar]
  42. Taga T., Kishimoto T. Cytokine receptors and signal transduction. FASEB J. 1992 Dec;6(15):3387–3396. doi: 10.1096/fasebj.6.15.1334470. [DOI] [PubMed] [Google Scholar]
  43. Takahashi N., Akatsu T., Udagawa N., Sasaki T., Yamaguchi A., Moseley J. M., Martin T. J., Suda T. Osteoblastic cells are involved in osteoclast formation. Endocrinology. 1988 Nov;123(5):2600–2602. doi: 10.1210/endo-123-5-2600. [DOI] [PubMed] [Google Scholar]
  44. Takahashi N., Udagawa N., Akatsu T., Tanaka H., Isogai Y., Suda T. Deficiency of osteoclasts in osteopetrotic mice is due to a defect in the local microenvironment provided by osteoblastic cells. Endocrinology. 1991 Apr;128(4):1792–1796. doi: 10.1210/endo-128-4-1792. [DOI] [PubMed] [Google Scholar]
  45. Tamura T., Udagawa N., Takahashi N., Miyaura C., Tanaka S., Yamada Y., Koishihara Y., Ohsugi Y., Kumaki K., Taga T. Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11924–11928. doi: 10.1073/pnas.90.24.11924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tobias J., Chambers T. J. Glucocorticoids impair bone resorptive activity and viability of osteoclasts disaggregated from neonatal rat long bones. Endocrinology. 1989 Sep;125(3):1290–1295. doi: 10.1210/endo-125-3-1290. [DOI] [PubMed] [Google Scholar]
  47. Tso J. Y., Sun X. H., Kao T. H., Reece K. S., Wu R. Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene. Nucleic Acids Res. 1985 Apr 11;13(7):2485–2502. doi: 10.1093/nar/13.7.2485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Udagawa N., Takahashi N., Akatsu T., Sasaki T., Yamaguchi A., Kodama H., Martin T. J., Suda T. The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology. 1989 Oct;125(4):1805–1813. doi: 10.1210/endo-125-4-1805. [DOI] [PubMed] [Google Scholar]
  49. Udagawa N., Takahashi N., Akatsu T., Tanaka H., Sasaki T., Nishihara T., Koga T., Martin T. J., Suda T. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7260–7264. doi: 10.1073/pnas.87.18.7260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wada S., Akatsu T., Tamura T., Takahashi N., Suda T., Nagata N. Glucocorticoid regulation of calcitonin receptor in mouse osteoclast-like multinucleated cells. J Bone Miner Res. 1994 Nov;9(11):1705–1712. doi: 10.1002/jbmr.5650091106. [DOI] [PubMed] [Google Scholar]
  51. Yamamura K., Kikutani H., Folsom V., Clayton L. K., Kimoto M., Akira S., Kashiwamura S., Tonegawa S., Kishimoto T. Functional expression of a microinjected Ed alpha gene in C57BL/6 transgenic mice. Nature. 1985 Jul 4;316(6023):67–69. doi: 10.1038/316067a0. [DOI] [PubMed] [Google Scholar]
  52. Yamasaki K., Taga T., Hirata Y., Yawata H., Kawanishi Y., Seed B., Taniguchi T., Hirano T., Kishimoto T. Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor. Science. 1988 Aug 12;241(4867):825–828. doi: 10.1126/science.3136546. [DOI] [PubMed] [Google Scholar]
  53. Yin T., Miyazawa K., Yang Y. C. Characterization of interleukin-11 receptor and protein tyrosine phosphorylation induced by interleukin-11 in mouse 3T3-L1 cells. J Biol Chem. 1992 Apr 25;267(12):8347–8351. [PubMed] [Google Scholar]
  54. Yin T., Yasukawa K., Taga T., Kishimoto T., Yang Y. C. Identification of a 130-kilodalton tyrosine-phosphorylated protein induced by interleukin-11 as JAK2 tyrosine kinase, which associates with gp130 signal transducer. Exp Hematol. 1994 May;22(5):467–472. [PubMed] [Google Scholar]
  55. Yoneda T., Nakai M., Moriyama K., Scott L., Ida N., Kunitomo T., Mundy G. R. Neutralizing antibodies to human interleukin 6 reverse hypercalcemia associated with a human squamous carcinoma. Cancer Res. 1993 Feb 15;53(4):737–740. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES