Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1995 Nov 1;182(5):1291–1300. doi: 10.1084/jem.182.5.1291

Myocarditis-inducing epitope of myosin binds constitutively and stably to I-Ak on antigen-presenting cells in the heart

PMCID: PMC2192215  PMID: 7595200

Abstract

Immune interactions in the heart were studied using a murine model of myosin-induced autoimmune myocarditis. A T cell hybridoma specific for mouse cardiac myosin was generated from A/J mice and used to demonstrate that endogenous myosin/I-Ak complexes are constitutively expressed on antigen-presenting cells in the heart. This T cell hybridoma, Seu.5, was used as a functional probe to identify a myocarditis-inducing epitope of cardiac myosin. Overlapping peptides based on the cardiac myosin heavy chain alpha (myhc alpha) sequences were synthesized and tested for their ability to stimulate Seu.5 T cells. One peptide, myhc alpha (325-357) strongly stimulated the Seu.5 T cells, localizing the epitope to this region of the myhc alpha molecule. Using truncated peptides, the epitope was further localized to residues 334-352. The myhc alpha (334-352) peptide strongly induced myocarditis when administered to A/J mice, which was histologically indistinguishable from that induced by myosin. The myhc alpha (334-352) epitope was present in cardiac myosin and not skeletal muscle myosins, providing a biochemical basis for the cardiac specificity of this autoimmune disease. Induction of myocarditis by this epitope was restricted to the myhc alpha isoform and not the myhc beta isoform, suggesting there may be a difference in the efficiency of generating tolerance to these isoforms of cardiac myosin, which are differentially developmentally regulated. The myhc alpha (334-352) epitope bound to purified I-Ak molecules in a similar manner to other I-Ak-restricted immunogenic epitopes, HEL(48-61) and RNase(43-56). Importantly, the myhc alpha (334-352) epitope was able to bind to I-Ak molecules on the surface of antigen-presenting cells in a stable manner. These findings demonstrate that autoantigenic epitopes can behave in a dominant manner and constitutively bind to class II molecules in the target organ in a similar manner to foreign immunogenic epitopes.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acha-Orbea H., Mitchell D. J., Timmermann L., Wraith D. C., Tausch G. S., Waldor M. K., Zamvil S. S., McDevitt H. O., Steinman L. Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell. 1988 Jul 15;54(2):263–273. doi: 10.1016/0092-8674(88)90558-2. [DOI] [PubMed] [Google Scholar]
  2. Alvarez F. L., Neu N., Rose N. R., Craig S. W., Beisel K. W. Heart-specific autoantibodies induced by Coxsackievirus B3: identification of heart autoantigens. Clin Immunol Immunopathol. 1987 Apr;43(1):129–139. doi: 10.1016/0090-1229(87)90164-4. [DOI] [PubMed] [Google Scholar]
  3. Austyn J. M., Hankins D. F., Larsen C. P., Morris P. J., Rao A. S., Roake J. A. Isolation and characterization of dendritic cells from mouse heart and kidney. J Immunol. 1994 Mar 1;152(5):2401–2410. [PubMed] [Google Scholar]
  4. Babbitt B. P., Allen P. M., Matsueda G., Haber E., Unanue E. R. Binding of immunogenic peptides to Ia histocompatibility molecules. 1985 Sep 26-Oct 2Nature. 317(6035):359–361. doi: 10.1038/317359a0. [DOI] [PubMed] [Google Scholar]
  5. Babbitt B. P., Matsueda G., Haber E., Unanue E. R., Allen P. M. Antigenic competition at the level of peptide-Ia binding. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4509–4513. doi: 10.1073/pnas.83.12.4509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brand D. D., Myers L. K., Terato K., Whittington K. B., Stuart J. M., Kang A. H., Rosloniec E. F. Characterization of the T cell determinants in the induction of autoimmune arthritis by bovine alpha 1(II)-CB11 in H-2q mice. J Immunol. 1994 Mar 15;152(6):3088–3097. [PubMed] [Google Scholar]
  7. Brusic V., Rudy G., Harrison L. C. MHCPEP: a database of MHC-binding peptides. Nucleic Acids Res. 1994 Sep;22(17):3663–3665. doi: 10.1093/nar/22.17.3663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Evavold B. D., Sloan-Lancaster J., Allen P. M. Antagonism of superantigen-stimulated helper T-cell clones and hybridomas by altered peptide ligand. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2300–2304. doi: 10.1073/pnas.91.6.2300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fairchild P. J., Wildgoose R., Atherton E., Webb S., Wraith D. C. An autoantigenic T cell epitope forms unstable complexes with class II MHC: a novel route for escape from tolerance induction. Int Immunol. 1993 Sep;5(9):1151–1158. doi: 10.1093/intimm/5.9.1151. [DOI] [PubMed] [Google Scholar]
  10. Fujinami R. S., Oldstone M. B. Molecular mimicry as a mechanism for virus-induced autoimmunity. Immunol Res. 1989;8(1):3–15. doi: 10.1007/BF02918552. [DOI] [PubMed] [Google Scholar]
  11. Goverman J., Woods A., Larson L., Weiner L. P., Hood L., Zaller D. M. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell. 1993 Feb 26;72(4):551–560. doi: 10.1016/0092-8674(93)90074-z. [DOI] [PubMed] [Google Scholar]
  12. Joosten I., Wauben M. H., Holewijn M. C., Reske K., Pedersen L. O., Roosenboom C. F., Hensen E. J., van Eden W., Buus S. Direct binding of autoimmune disease related T cell epitopes to purified Lewis rat MHC class II molecules. Int Immunol. 1994 May;6(5):751–759. doi: 10.1093/intimm/6.5.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Katz J. D., Wang B., Haskins K., Benoist C., Mathis D. Following a diabetogenic T cell from genesis through pathogenesis. Cell. 1993 Sep 24;74(6):1089–1100. doi: 10.1016/0092-8674(93)90730-e. [DOI] [PubMed] [Google Scholar]
  14. Liao L., Sindhwani R., Leinwand L., Diamond B., Factor S. Cardiac alpha-myosin heavy chains differ in their induction of myocarditis. Identification of pathogenic epitopes. J Clin Invest. 1993 Dec;92(6):2877–2882. doi: 10.1172/JCI116909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lorenz R. G., Allen P. M. Direct evidence for functional self-protein/Ia-molecule complexes in vivo. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5220–5223. doi: 10.1073/pnas.85.14.5220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lorenz R. G., Tyler A. N., Allen P. M. T cell recognition of bovine ribonuclease. Self/non-self discrimination at the level of binding to the I-Ak molecule. J Immunol. 1988 Dec 15;141(12):4124–4128. [PubMed] [Google Scholar]
  17. Mathisen P. M., Pease S., Garvey J., Hood L., Readhead C. Identification of an embryonic isoform of myelin basic protein that is expressed widely in the mouse embryo. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10125–10129. doi: 10.1073/pnas.90.21.10125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McNally E. M., Kraft R., Bravo-Zehnder M., Taylor D. A., Leinwand L. A. Full-length rat alpha and beta cardiac myosin heavy chain sequences. Comparisons suggest a molecular basis for functional differences. J Mol Biol. 1989 Dec 5;210(3):665–671. doi: 10.1016/0022-2836(89)90141-1. [DOI] [PubMed] [Google Scholar]
  19. Mouritsen S., Hansen A. S., Petersen B. L., Buus S. pH dependence of the interaction between immunogenic peptides and MHC class II molecules. Evidence for an acidic intracellular compartment being the organelle of interaction. J Immunol. 1992 Mar 1;148(5):1438–1444. [PubMed] [Google Scholar]
  20. Nelson C. A., Petzold S. J., Unanue E. R. Identification of two distinct properties of class II major histocompatibility complex-associated peptides. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1227–1231. doi: 10.1073/pnas.90.4.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nelson C. A., Petzold S. J., Unanue E. R. Peptides determine the lifespan of MHC class II molecules in the antigen-presenting cell. Nature. 1994 Sep 15;371(6494):250–252. doi: 10.1038/371250a0. [DOI] [PubMed] [Google Scholar]
  22. Neu N., Rose N. R., Beisel K. W., Herskowitz A., Gurri-Glass G., Craig S. W. Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol. 1987 Dec 1;139(11):3630–3636. [PubMed] [Google Scholar]
  23. Quinn-Laquer B. K., Kennedy J. E., Wei S. J., Beisel K. W. Characterization of the allelic differences in the mouse cardiac alpha-myosin heavy chain coding sequence. Genomics. 1992 May;13(1):176–188. doi: 10.1016/0888-7543(92)90218-h. [DOI] [PubMed] [Google Scholar]
  24. Rosenberg N. L., Kotzin B. L. Aberrant expression of class II MHC antigens by skeletal muscle endothelial cells in experimental autoimmune myositis. J Immunol. 1989 Jun 15;142(12):4289–4294. [PubMed] [Google Scholar]
  25. Sadegh-Nasseri S., Germain R. N. A role for peptide in determining MHC class II structure. Nature. 1991 Sep 12;353(6340):167–170. doi: 10.1038/353167a0. [DOI] [PubMed] [Google Scholar]
  26. Schiaffino S., Reggiani C. Myosin isoforms in mammalian skeletal muscle. J Appl Physiol (1985) 1994 Aug;77(2):493–501. doi: 10.1152/jappl.1994.77.2.493. [DOI] [PubMed] [Google Scholar]
  27. Sercarz E. E., Lehmann P. V., Ametani A., Benichou G., Miller A., Moudgil K. Dominance and crypticity of T cell antigenic determinants. Annu Rev Immunol. 1993;11:729–766. doi: 10.1146/annurev.iy.11.040193.003501. [DOI] [PubMed] [Google Scholar]
  28. Shiverick K. T., Thomas L. L., Alpert N. R. Purification of cardiac myosin. Application to hypertrophied myocardium. Biochim Biophys Acta. 1975 May 30;393(1):124–133. doi: 10.1016/0005-2795(75)90222-6. [DOI] [PubMed] [Google Scholar]
  29. Sinha A. A., Lopez M. T., McDevitt H. O. Autoimmune diseases: the failure of self tolerance. Science. 1990 Jun 15;248(4961):1380–1388. doi: 10.1126/science.1972595. [DOI] [PubMed] [Google Scholar]
  30. Smith S. C., Allen P. M. Expression of myosin-class II major histocompatibility complexes in the normal myocardium occurs before induction of autoimmune myocarditis. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9131–9135. doi: 10.1073/pnas.89.19.9131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smith S. C., Allen P. M. Myosin-induced acute myocarditis is a T cell-mediated disease. J Immunol. 1991 Oct 1;147(7):2141–2147. [PubMed] [Google Scholar]
  32. Smith S. C., Allen P. M. Neutralization of endogenous tumor necrosis factor ameliorates the severity of myosin-induced myocarditis. Circ Res. 1992 Apr;70(4):856–863. doi: 10.1161/01.res.70.4.856. [DOI] [PubMed] [Google Scholar]
  33. Spencer S. C., Fabre J. W. Characterization of the tissue macrophage and the interstitial dendritic cell as distinct leukocytes normally resident in the connective tissue of rat heart. J Exp Med. 1990 Jun 1;171(6):1841–1851. doi: 10.1084/jem.171.6.1841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Strehler E. E., Strehler-Page M. A., Perriard J. C., Periasamy M., Nadal-Ginard B. Complete nucleotide and encoded amino acid sequence of a mammalian myosin heavy chain gene. Evidence against intron-dependent evolution of the rod. J Mol Biol. 1986 Aug 5;190(3):291–317. doi: 10.1016/0022-2836(86)90003-3. [DOI] [PubMed] [Google Scholar]
  35. Theofilopoulos A. N. The basis of autoimmunity: Part I. Mechanisms of aberrant self-recognition. Immunol Today. 1995 Feb;16(2):90–98. doi: 10.1016/0167-5699(95)80095-6. [DOI] [PubMed] [Google Scholar]
  36. Wall K. A., Hu J. Y., Currier P., Southwood S., Sette A., Infante A. J. A disease-related epitope of Torpedo acetylcholine receptor. Residues involved in I-Ab binding, self-nonself discrimination, and TCR antagonism. J Immunol. 1994 May 1;152(9):4526–4536. [PubMed] [Google Scholar]
  37. Wall M., Southwood S., Sidney J., Oseroff C., del Guericio M. F., Lamont A. G., Colón S. M., Arrhenius T., Gaeta F. C., Sette A. High affinity for class II molecules as a necessary but not sufficient characteristic of encephalitogenic determinants. Int Immunol. 1992 Jul;4(7):773–777. doi: 10.1093/intimm/4.7.773. [DOI] [PubMed] [Google Scholar]
  38. Wegmann K. W., Zhao W., Griffin A. C., Hickey W. F. Identification of myocarditogenic peptides derived from cardiac myosin capable of inducing experimental allergic myocarditis in the Lewis rat. The utility of a class II binding motif in selecting self-reactive peptides. J Immunol. 1994 Jul 15;153(2):892–900. [PubMed] [Google Scholar]
  39. Zamvil S. S., Mitchell D. J., Moore A. C., Kitamura K., Steinman L., Rothbard J. B. T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature. 1986 Nov 20;324(6094):258–260. doi: 10.1038/324258a0. [DOI] [PubMed] [Google Scholar]
  40. Zamvil S., Nelson P., Trotter J., Mitchell D., Knobler R., Fritz R., Steinman L. T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. 1985 Sep 26-Oct 2Nature. 317(6035):355–358. doi: 10.1038/317355a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES