Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Sep;163(3):933–937. doi: 10.1128/jb.163.3.933-937.1985

Metabolic pathway for the utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12.

E Shaibe, E Metzer, Y S Halpern
PMCID: PMC219222  PMID: 3897201

Abstract

The pathway for the utilization of L-arginine, agmatine, L-ornithine, and putrescine as the sole nitrogen source by Escherichia coli K-12 has been elucidated. Mutants impaired in the utilization of one or more of the above compounds were isolated, and their growth on the different compounds as a sole source of nitrogen and the activities of enzymes of the putative pathway were examined. Our results show that L-arginine is first decarboxylated to agmatine, which is hydrolyzed to urea and putrescine. L-Ornithine is decarboxylated to putrescine. Putrescine is transaminated to gamma-aminobutyraldehyde, which is oxidized to gamma-aminobutyric acid. gamma-Aminobutyric acid is degraded to succinate. The gene for putrescine aminotransferase was located at 89 min on the E. coli K-12 chromosome, and the gene for gamma-aminobutyraldehyde (pyrroline) dehydrogenase was mapped at approximately 30 min.

Full text

PDF
933

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdelal A. T. Arginine catabolism by microorganisms. Annu Rev Microbiol. 1979;33:139–168. doi: 10.1146/annurev.mi.33.100179.001035. [DOI] [PubMed] [Google Scholar]
  2. Bachmann B. J. Linkage map of Escherichia coli K-12, edition 7. Microbiol Rev. 1983 Jun;47(2):180–230. doi: 10.1128/mr.47.2.180-230.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baumberg S., Harwood C. R. Carbon and nitrogen repression of arginine catabolic enzymes in Bacillus subtilis. J Bacteriol. 1979 Jan;137(1):189–196. doi: 10.1128/jb.137.1.189-196.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bender R. A., Janssen K. A., Resnick A. D., Blumenberg M., Foor F., Magasanik B. Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J Bacteriol. 1977 Feb;129(2):1001–1009. doi: 10.1128/jb.129.2.1001-1009.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Billheimer J. T., Jones E. E. Inducible and repressible acetylornithine delta-transaminase in Escherichia coli: different proteins. Arch Biochem Biophys. 1974 Apr 2;161(2):647–651. doi: 10.1016/0003-9861(74)90349-x. [DOI] [PubMed] [Google Scholar]
  6. Dover S., Halpern Y. S. Genetic analysis of the gamma-aminobutyrate utilization pathway in Escherichia coli K-12. J Bacteriol. 1974 Feb;117(2):494–501. doi: 10.1128/jb.117.2.494-501.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Friedrich B., Magasanik B. Urease of Klebsiella aerogenes: control of its synthesis by glutamine synthetase. J Bacteriol. 1977 Aug;131(2):446–452. doi: 10.1128/jb.131.2.446-452.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Friedrich B., Magasanik B. Utilization of arginine by Klebsiella aerogenes. J Bacteriol. 1978 Feb;133(2):680–685. doi: 10.1128/jb.133.2.680-685.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GORINI L., KAUFMAN H. Selecting bacterial mutants by the penicillin method. Science. 1960 Feb 26;131(3400):604–605. doi: 10.1126/science.131.3400.604. [DOI] [PubMed] [Google Scholar]
  10. Hirshfield I. N., Rosenfeld H. J., Leifer Z., Maas W. K. Isolation and characterization of a mutant of Escherichia coli blocked in the synthesis of putrescine. J Bacteriol. 1970 Mar;101(3):725–730. doi: 10.1128/jb.101.3.725-730.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. JAKOBY W. B., FREDERICKS J. Pyrrolidine and putrescine metabolism: gamma-aminobutyraldehyde dehydrogenase. J Biol Chem. 1959 Aug;234(8):2145–2150. [PubMed] [Google Scholar]
  12. Kahane S., Levitz R., Halpern Y. S. Specificity and regulation of gamma-aminobutyrate transport in Escherichia coli. J Bacteriol. 1978 Aug;135(2):295–299. doi: 10.1128/jb.135.2.295-299.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. MAAS R., MAAS W. K. Introduction of a gene from Escherichia coli B into HFR and F-strains of Escherichia coli K-12. Proc Natl Acad Sci U S A. 1962 Nov 15;48:1887–1893. doi: 10.1073/pnas.48.11.1887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maas W. K. Mapping of genes involved in the synthesis of spermidine in Escherichia coli. Mol Gen Genet. 1972;119(1):1–9. doi: 10.1007/BF00270439. [DOI] [PubMed] [Google Scholar]
  16. Mercenier A., Simon J. P., Haas D., Stalon V. Catabolism of L-arginine by Pseudomonas aeruginosa. J Gen Microbiol. 1980 Feb;116(2):381–389. doi: 10.1099/00221287-116-2-381. [DOI] [PubMed] [Google Scholar]
  17. Metzer E., Levitz R., Halpern Y. S. Isolation and properties of Escherichia coli K-12 mutants impaired in the utilization of gamma-aminobutyrate. J Bacteriol. 1979 Mar;137(3):1111–1118. doi: 10.1128/jb.137.3.1111-1118.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Morris D. R., Koffron K. L. Putrescine biosynthesis in Escherichia coli. Regulation through pathway selection. J Biol Chem. 1969 Nov 25;244(22):6094–6099. [PubMed] [Google Scholar]
  19. Nguyen Van Thoai, Thome-Beau F., Olomucki A. Induction et spécificité des enzymes de la nouvelle voie catabolique de l'arginine. Biochim Biophys Acta. 1966 Jan 25;115(1):73–80. [PubMed] [Google Scholar]
  20. Prozesky O. W., Grabow W. O., van der Merwe S., Coetzee J. N. Arginine gene clusters in the Proteus-Providence group. J Gen Microbiol. 1973 Jul;77(1):237–240. doi: 10.1099/00221287-77-1-237. [DOI] [PubMed] [Google Scholar]
  21. Shaibe E., Metzer E., Halpern Y. S. Control of utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12. J Bacteriol. 1985 Sep;163(3):938–942. doi: 10.1128/jb.163.3.938-942.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tabor H., Tabor C. W. Formation of 1,4-diaminobutane and of spermidine by an ornithine auxotroph of Escherichia coli grown on limiting ornithine or arginine. J Biol Chem. 1969 May 10;244(9):2286–2292. [PubMed] [Google Scholar]
  23. Vanderbilt A. S., Gaby N. S., Rodwell V. W. Intermediates and enzymes between alpha-ketoarginine and gamma-guanidinobutyrate in the L-arginine catabolic pathway of Pseudomonas putida. J Biol Chem. 1975 Jul 25;250(14):5322–5329. [PubMed] [Google Scholar]
  24. Whitney P. A., Magasanik B. The induction of arginase in Saccharomyces cerevisiae. J Biol Chem. 1973 Sep 10;248(17):6197–6202. [PubMed] [Google Scholar]
  25. Wilson O. H., Holden J. T. Arginine transport and metabolism in osmotically shocked and unshocked cells of Escherichia coli W. J Biol Chem. 1969 May 25;244(10):2737–2742. [PubMed] [Google Scholar]
  26. Zaboura M., Halpern Y. S. Regulation of gamma-aminobutyric acid degradation in Escherichia coli by nitrogen metabolism enzymes. J Bacteriol. 1978 Feb;133(2):447–451. doi: 10.1128/jb.133.2.447-451.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES