Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Sep;163(3):1136–1141. doi: 10.1128/jb.163.3.1136-1141.1985

Enzymology of the beta-ketoadipate pathway in Trichosporon cutaneum.

J B Powlowski, J Ingebrand, S Dagley
PMCID: PMC219249  PMID: 4040905

Abstract

Cell extracts were prepared from Trichosporon cutaneum grown with phenol or p-cresol, and activities were assayed for enzymes catalyzing conversion of these two carbon sources into 3-ketoadipate (beta-ketoadipate) and 3-keto-4-methyladipate, respectively. When activities of each enzyme were expressed as a ratio, the rate for methyl-substituted substrate being divided by that for the unsubstituted substrate, it was apparent that p-cresol-grown cells elaborated pairs of enzymes for hydroxylation, dioxygenation, and delactonization. One enzyme of each pair was more active against its methyl-substituted substrate, and the other was more active against its unsubstituted substrate. Column chromatography was used to separate two hydroxylase activities and also 1,2-dioxygenase activities; the catechol 1,2-dioxygenases were further purified to electrophoretic homogeneity. Extracts of phenol-grown cells contained only those enzymes in this group that were more active against unsubstituted substrates. In contrast, whether cells were grown with phenol or p-cresol, only one muconate cycloisomerase (lactonizing enzyme) was elaborated which was more active against 3-methyl-cis,cis-muconate than against cis,cis-muconate; in this respect it differed from a cycloisomerase of another strain of T. cutaneum which has been characterized. The cycloisomerase was purified from both phenol-grown and p-cresol-grown cells, and some characteristics were determined.

Full text

PDF
1141

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dorn E., Knackmuss H. J. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem J. 1978 Jul 15;174(1):73–84. doi: 10.1042/bj1740073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gaal A., Neujahr H. Y. cis,cis-Muconate cyclase from Trichosporon cutaneum. Biochem J. 1980 Oct 1;191(1):37–43. doi: 10.1042/bj1910037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. KATAGIRI M., HAYAISHI O. Enzymatic degradation of beta-ketoadipic acid. J Biol Chem. 1957 May;226(1):439–448. [PubMed] [Google Scholar]
  4. Kalb V. F., Jr, Bernlohr R. W. A new spectrophotometric assay for protein in cell extracts. Anal Biochem. 1977 Oct;82(2):362–371. doi: 10.1016/0003-2697(77)90173-7. [DOI] [PubMed] [Google Scholar]
  5. Meagher R. B., Ornston L. N. Relationships among enzymes of the beta-ketoadipate pathway. I. Properties of cis,cis-muconate-lactonizing enzyme and muconolactone isomerase from Pseudomonas putida. Biochemistry. 1973 Aug 28;12(18):3523–3530. doi: 10.1021/bi00742a027. [DOI] [PubMed] [Google Scholar]
  6. Nakai C., Kagamiyama H., Saeki Y., Nozaki M. Nonidentical subunits of pyrocatechase from Pseudomonas arvilla C-1. Arch Biochem Biophys. 1979 Jun;195(1):12–22. doi: 10.1016/0003-9861(79)90322-9. [DOI] [PubMed] [Google Scholar]
  7. Neujahr H. Y., Gaal A. Phenol hydroxylase from yeast. Purification and properties of the enzyme from Trichosporon cutaneum. Eur J Biochem. 1973 Jun;35(2):386–400. doi: 10.1111/j.1432-1033.1973.tb02851.x. [DOI] [PubMed] [Google Scholar]
  8. Neujahr H. Y., Kjellén K. G. Phenol hydroxylase from yeast. Reaction with phenol derivatives. J Biol Chem. 1978 Dec 25;253(24):8835–8841. [PubMed] [Google Scholar]
  9. Neujahr H. Y., Kjellén K. G. Phenol hydroxylase from yeast: a lysyl residue essential for binding of reduced nicotinamide adenine dinucleotide phosphate. Biochemistry. 1980 Oct 28;19(22):4967–4972. doi: 10.1021/bi00563a005. [DOI] [PubMed] [Google Scholar]
  10. Powlowski J. B., Dagley S. beta-Ketoadipate pathway in Trichosporon cutaneum modified for methyl-substituted metabolites. J Bacteriol. 1985 Sep;163(3):1126–1135. doi: 10.1128/jb.163.3.1126-1135.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. SISTROM W. R., STANIER R. Y. The mechanism of formation of beta-ketoadipic acid by bacteria. J Biol Chem. 1954 Oct;210(2):821–836. [PubMed] [Google Scholar]
  12. Stanier R. Y., Ornston L. N. The beta-ketoadipate pathway. Adv Microb Physiol. 1973;9(0):89–151. [PubMed] [Google Scholar]
  13. Sze I. S., Dagley S. Properties of salicylate hydroxylase and hydroxyquinol 1,2-dioxygenase purified from Trichosporon cutaneum. J Bacteriol. 1984 Jul;159(1):353–359. doi: 10.1128/jb.159.1.353-359.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Thatcher D. R., Cain R. B. Metabolism of aromatic compounds by fungi. 1. Purification and physical properties of 3-carboxy-cis-cis-muconate cyclase from Aspergillus niger. Eur J Biochem. 1974 Oct 2;48(2):549–556. doi: 10.1111/j.1432-1033.1974.tb03796.x. [DOI] [PubMed] [Google Scholar]
  15. Varga J. M., Neujahr H. Y. Purification and properties of catechol 1,2-oxygenase from Trichosporon cutaneum. Eur J Biochem. 1970 Feb;12(3):427–434. doi: 10.1111/j.1432-1033.1970.tb00869.x. [DOI] [PubMed] [Google Scholar]
  16. Yoshida R., Hori K., Fujiwara M., Saeki Y., Kagamiyama H. Nonidentical subunits of protocatechuate 3,4-dioxygenase. Biochemistry. 1976 Sep 7;15(18):4048–4053. doi: 10.1021/bi00663a020. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES