Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Dec;164(3):1088–1093. doi: 10.1128/jb.164.3.1088-1093.1985

Characterization of a gamma-glutamyl kinase from Escherichia coli that confers proline overproduction and osmotic tolerance.

L T Smith
PMCID: PMC219301  PMID: 2999068

Abstract

Mutation(s) in the proBA operon of Escherichia coli confers proline overproduction and enhanced osmotic tolerance in enteric bacteria (L. N. Csonka, Mol. Gen. Genet. 182:82-86, 1981; M. J. Mahan and L. N. Csonka, J. Bacteriol. 156:1249-1262, 1983). A glutamate-dependent ATPase assay was developed and used to determine proB-encoded gamma-glutamyl kinase activity in the absence of glutamate-gamma-semialdehyde dehydrogenase. This assay indicated that the feedback insensitivity of mutant gamma-glutamyl kinase was independent of glutamate-gamma-semialdehyde dehydrogenase. However, the capacity of glutamate-gamma-semialdehyde dehydrogenase from the osmotolerant mutant to interact with the kinase was altered in thermal stability, suggesting that mutations in both proB and proA may be required for osmotolerance.

Full text

PDF
1090

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. Bachmann B. J., Low K. B. Linkage map of Escherichia coli K-12, edition 6. Microbiol Rev. 1980 Mar;44(1):1–56. doi: 10.1128/mr.44.1.1-56.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baich A. The biosynthesis of proline in Escherichia coli: phosphate-dependent glutamate -semialdehyde dehydrogenase (NADP), the second enzyme in the pathway. Biochim Biophys Acta. 1971 Jul 20;244(1):129–134. doi: 10.1016/0304-4165(71)90129-2. [DOI] [PubMed] [Google Scholar]
  4. Csonka L. N. Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol Gen Genet. 1981;182(1):82–86. doi: 10.1007/BF00422771. [DOI] [PubMed] [Google Scholar]
  5. Deutch A. H., Rushlow K. E., Smith C. J. Analysis of the Escherichia coli proBA locus by DNA and protein sequencing. Nucleic Acids Res. 1984 Aug 10;12(15):6337–6355. doi: 10.1093/nar/12.15.6337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hayzer D. J., Leisinger T. Proline biosynthesis in Escherichia coli. Purification and characterisation of glutamate-semialdehyde dehydrogenase. Eur J Biochem. 1982 Jan;121(3):561–565. doi: 10.1111/j.1432-1033.1982.tb05823.x. [DOI] [PubMed] [Google Scholar]
  7. Hayzer D. J., Leisinger T. The gene-enzyme relationships of proline biosynthesis in Escherichia coli. J Gen Microbiol. 1980 Jun;118(2):287–293. doi: 10.1099/00221287-118-2-287. [DOI] [PubMed] [Google Scholar]
  8. Hayzer D. J., Moses V. The enzymes of proline biosynthesis in Escherichia coli. Their molecular weights and the problem of enzyme aggregation. Biochem J. 1978 Jul 1;173(1):219–228. doi: 10.1042/bj1730219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Le Rudulier D., Strom A. R., Dandekar A. M., Smith L. T., Valentine R. C. Molecular biology of osmoregulation. Science. 1984 Jun 8;224(4653):1064–1068. doi: 10.1126/science.224.4653.1064. [DOI] [PubMed] [Google Scholar]
  11. Lodato R. F., Smith R. J., Valle D. L., Crane K. Mutant cell lines resistant to azetidine-2-carboxylic acid: alterations in the synthesis of proline from glutamic acid. J Cell Physiol. 1984 Apr;119(1):137–143. doi: 10.1002/jcp.1041190122. [DOI] [PubMed] [Google Scholar]
  12. Mahan M. J., Csonka L. N. Genetic analysis of the proBA genes of Salmonella typhimurium: physical and genetic analyses of the cloned proB+ A+ genes of Escherichia coli and of a mutant allele that confers proline overproduction and enhanced osmotolerance. J Bacteriol. 1983 Dec;156(3):1249–1262. doi: 10.1128/jb.156.3.1249-1262.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mezl V. A., Knox W. E. Properties and analysis of a stable derivative of pyrroline-5-carboxylic acid for use in metabolic studies. Anal Biochem. 1976 Aug;74(2):430–440. doi: 10.1016/0003-2697(76)90223-2. [DOI] [PubMed] [Google Scholar]
  14. Penefsky H. S. A centrifuged-column procedure for the measurement of ligand binding by beef heart F1. Methods Enzymol. 1979;56:527–530. doi: 10.1016/0076-6879(79)56050-9. [DOI] [PubMed] [Google Scholar]
  15. Rossi J. J., Vender J., Berg C. M., Coleman W. H. Partial purification and some properties of delta1-pyrroline-5-carboxylate reductase from Escherichia coli. J Bacteriol. 1977 Jan;129(1):108–114. doi: 10.1128/jb.129.1.108-114.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Smith C. J., Deutch A. H., Rushlow K. E. Purification and characteristics of a gamma-glutamyl kinase involved in Escherichia coli proline biosynthesis. J Bacteriol. 1984 Feb;157(2):545–551. doi: 10.1128/jb.157.2.545-551.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tempest D. W., Meers J. L., Brown C. M. Influence of environment on the content and composition of microbial free amino acid pools. J Gen Microbiol. 1970 Dec;64(2):171–185. doi: 10.1099/00221287-64-2-171. [DOI] [PubMed] [Google Scholar]
  18. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES