Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Dec;164(3):1211–1217. doi: 10.1128/jb.164.3.1211-1217.1985

Maintenance of D-alanine ester substitution of lipoteichoic acid by reesterification in Staphylococcus aureus.

H U Koch, R Döker, W Fischer
PMCID: PMC219317  PMID: 4066613

Abstract

Toluene-treated Staphylococcus aureus cells did not synthesize teichoic acid and lipoteichoic acid under the conditions used. The organism displayed, however, a high capacity of incorporating D-[14C]alanine into previously formed polymers. The reaction was dependent on ATP and enhanced by magnesium ions. The incorporation rate into lipoteichoic acid correlated with the rate of loss of alanine ester which occurred through transfer to teichoic acid and base-catalyzed hydrolysis. At pH 6.5 the loss (20% within 4 h) was completely compensated for by reesterification. At pH 7.5 the loss was 60%, but by accelerated incorporation it was reduced to 10%. Incorporation was also enhanced when the original substitution of lipoteichoic acid was lowered by previous growth of S. aureus at high salt concentration. The newly added alanine was randomly distributed along the poly(glycerophosphate) chain. The decreased alanine substitution of lipoteichoic acid after growth at high salt concentration was shown to result from a direct inhibition of alanine incorporation.

Full text

PDF
1216

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archibald A. R., Baddiley J., Heptinstall S. The alanine ester content and magnesium binding capacity of walls of Staphylococcus aureus H grown at different pH values. Biochim Biophys Acta. 1973 Feb 16;291(3):629–634. doi: 10.1016/0005-2736(73)90468-9. [DOI] [PubMed] [Google Scholar]
  2. Archibald A. R., Baddiley J. The teichoic acids. Adv Carbohydr Chem Biochem. 1966;21:323–375. doi: 10.1016/s0096-5332(08)60320-3. [DOI] [PubMed] [Google Scholar]
  3. Baddiley J. Teichoic acids in cell walls and membranes of bacteria. Essays Biochem. 1972;8:35–77. [PubMed] [Google Scholar]
  4. Bertram K. C., Hancock I. C., Baddiley J. Synthesis of teichoic acid by Bacillus subtilis protoplasts. J Bacteriol. 1981 Nov;148(2):406–412. doi: 10.1128/jb.148.2.406-412.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Childs W. C., 3rd, Neuhaus F. C. Biosynthesis of D-alanyl-lipoteichoic acid: characterization of ester-linked D-alanine in the in vitro-synthesized product. J Bacteriol. 1980 Jul;143(1):293–301. doi: 10.1128/jb.143.1.293-301.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fischer W., Koch H. U., Haas R. Improved preparation of lipoteichoic acids. Eur J Biochem. 1983 Jul 1;133(3):523–530. doi: 10.1111/j.1432-1033.1983.tb07495.x. [DOI] [PubMed] [Google Scholar]
  7. Fischer W., Koch H. U., Rösel P., Fiedler F. Alanine ester-containing native lipoteichoic acids do not act as lipoteichoic acid carrier. Isolation, structural and functional characterization. J Biol Chem. 1980 May 25;255(10):4557–4562. [PubMed] [Google Scholar]
  8. Fischer W., Koch H. U., Rösel P., Fiedler F., Schmuck L. Structural requirements of lipoteichoic acid carrier for recognition by the poly(ribitol phosphate) polymerase from Staphylococcus aureus H. A study of various lipoteichoic acids, derivatives, and related compounds. J Biol Chem. 1980 May 25;255(10):4550–4556. [PubMed] [Google Scholar]
  9. Fischer W., Rösel P. The alanine ester substitution of lipoteichoic acid (LTA) in Staphylococcus aureus. FEBS Lett. 1980 Oct 6;119(2):224–226. doi: 10.1016/0014-5793(80)80257-2. [DOI] [PubMed] [Google Scholar]
  10. Hancock I. C. The biosynthesis of wall teichoic acid by toluenised cells of Bacillus subtilis W23. Eur J Biochem. 1981 Sep;119(1):85–90. doi: 10.1111/j.1432-1033.1981.tb05580.x. [DOI] [PubMed] [Google Scholar]
  11. Harrington C. R., Baddiley J. Peptidoglycan synthesis by partly autolyzed cells of Bacillus subtilis W23. J Bacteriol. 1983 Aug;155(2):776–792. doi: 10.1128/jb.155.2.776-792.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harrington C. R., Baddiley J. Synthesis of peptidoglycan and teichoic acid in Bacillus subtilis: role of the electrochemical proton gradient. J Bacteriol. 1984 Sep;159(3):925–933. doi: 10.1128/jb.159.3.925-933.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heptinstall S., Archibald A. R., Baddiley J. Teichoic acids and membrane function in bacteria. Nature. 1970 Feb 7;225(5232):519–521. doi: 10.1038/225519a0. [DOI] [PubMed] [Google Scholar]
  14. Koch H. U., Haas R., Fischer W. The role of lipoteichoic acid biosynthesis in membrane lipid metabolism of growing Staphylococcus aureus. Eur J Biochem. 1984 Jan 16;138(2):357–363. doi: 10.1111/j.1432-1033.1984.tb07923.x. [DOI] [PubMed] [Google Scholar]
  15. MacArthur A. E., Archibald A. R. Effect of culture pH on the D-alanine ester content of lipoteichoic acid in Staphylococcus aureus. J Bacteriol. 1984 Nov;160(2):792–793. doi: 10.1128/jb.160.2.792-793.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nakano M., Fischer W. Trihexosyldiacylglycerol and acyltrihexosyldiacylglycerol as lipid anchors of the lipoteichoic acid of Lactobacillus casei DSM 20021. Hoppe Seylers Z Physiol Chem. 1978 Jan;359(1):1–11. doi: 10.1515/bchm.1978.359.1.1. [DOI] [PubMed] [Google Scholar]
  17. Neuhaus F. C., Linzer R., Reusch V. M., Jr Biosynthesis of membrane teichoic acid: role of the D-alanine-activating enzyme and D-alanine: membrane acceptor ligase. Ann N Y Acad Sci. 1974 May 10;235(0):502–518. doi: 10.1111/j.1749-6632.1974.tb43287.x. [DOI] [PubMed] [Google Scholar]
  18. Reusch V. M., Jr, Neuhaus F. C. D-Alanine: membrane acceptor ligase from Lactobacillus casei. J Biol Chem. 1971 Oct 25;246(20):6136–6143. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES