Abstract
We have investigated the early cellular events that take place during the change in lineage commitment from hypertrophic chondrocytes to osteoblast-like cells. We have induced this osteogenic differentiation by cutting through the hypertrophic cartilage of embryonic chick femurs and culturing the explants. Immunocytochemical characterization, [3H]thymidine pulse-chase labeling, in situ nick translation or end labeling of DNA breaks were combined with ultrastructural studies to characterize the changing pattern of differentiation. The first responses to the cutting, seen after 2 d, were upregulation of alkaline phosphatase activity, synthesis of type I collagen and single-stranded DNA breaks, probably indicating a metastable state. Associated with the change from chondrogenic to osteogenic commitment was an asymmetric cell division with diverging fates of the two daughter cells, where one daughter cell remained viable and the other one died. The available evidence suggests that the viable daughter cell then divided and generated osteogenic cells, while the other daughter cell died by apoptosis. The results suggest a new concept of how changes in lineage commitment of differentiated cells may occur. The concepts also reconcile previously opposing views of the fate of the hypertrophic chondrocyte.
Full Text
The Full Text of this article is available as a PDF (7.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aigner T., Stöss H., Weseloh G., Zeiler G., von der Mark K. Activation of collagen type II expression in osteoarthritic and rheumatoid cartilage. Virchows Arch B Cell Pathol Incl Mol Pathol. 1992;62(6):337–345. doi: 10.1007/BF02899701. [DOI] [PubMed] [Google Scholar]
- Anderson C. E., Parker J. Invasion and resorption in enchondral ossification. An electron microscopic study. J Bone Joint Surg Am. 1966 Jul;48(5):899–914. [PubMed] [Google Scholar]
- Ansari B., Coates P. J., Greenstein B. D., Hall P. A. In situ end-labelling detects DNA strand breaks in apoptosis and other physiological and pathological states. J Pathol. 1993 May;170(1):1–8. doi: 10.1002/path.1711700102. [DOI] [PubMed] [Google Scholar]
- Bennett V. D., Adams S. L. Identification of a cartilage-specific promoter within intron 2 of the chick alpha 2(I) collagen gene. J Biol Chem. 1990 Feb 5;265(4):2223–2230. [PubMed] [Google Scholar]
- Bentley G., Greer R. B. The fate of chondrocytes in endochondral ossification in the rabbit. J Bone Joint Surg Br. 1970 Aug;52(3):571–577. [PubMed] [Google Scholar]
- Beresford J. N. Osteogenic stem cells and the stromal system of bone and marrow. Clin Orthop Relat Res. 1989 Mar;(240):270–280. [PubMed] [Google Scholar]
- Beresford W. A. Direct transdifferentiation: can cells change their phenotype without dividing? Cell Differ Dev. 1990 Feb;29(2):81–93. doi: 10.1016/0922-3371(90)90026-s. [DOI] [PubMed] [Google Scholar]
- Brighton C. T., Sugioka Y., Hunt R. M. Cytoplasmic structures of epiphyseal plate chondrocytes. Quantitative evaluation using electron micrographs of rat costochondral junctions with special reference to the fate of hypertrophic cells. J Bone Joint Surg Am. 1973 Jun;55(4):771–784. [PubMed] [Google Scholar]
- Casasco A., Casasco M., Cornaglia A. I., Danova M., Giordano M., Calligaro A. Tissue fixation for immunohistochemical detection of proliferating cell nuclear antigen with PC10 monoclonal antibody. Biotech Histochem. 1994 Mar;69(2):112–117. doi: 10.3109/10520299409106270. [DOI] [PubMed] [Google Scholar]
- Chen J., Zhang Q., McCulloch C. A., Sodek J. Immunohistochemical localization of bone sialoprotein in foetal porcine bone tissues: comparisons with secreted phosphoprotein 1 (SPP-1, osteopontin) and SPARC (osteonectin). Histochem J. 1991 Jun;23(6):281–289. doi: 10.1007/BF01045047. [DOI] [PubMed] [Google Scholar]
- Closs E. I., Murray A. B., Schmidt J., Schön A., Erfle V., Strauss P. G. c-fos expression precedes osteogenic differentiation of cartilage cells in vitro. J Cell Biol. 1990 Sep;111(3):1313–1323. doi: 10.1083/jcb.111.3.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coulton G. R., Rogers B., Strutt P., Skynner M. J., Watt D. J. In situ localisation of single-stranded DNA breaks in nuclei of a subpopulation of cells within regenerating skeletal muscle of the dystrophic mdx mouse. J Cell Sci. 1992 Jul;102(Pt 3):653–662. doi: 10.1242/jcs.102.3.653. [DOI] [PubMed] [Google Scholar]
- Crelin E. S., Koch W. E. An autoradiographic study of chondrocyte transformation into chondroclasts and osteocytes during bone formation in vitro. Anat Rec. 1967 Aug;158(4):473–483. doi: 10.1002/ar.1091580410. [DOI] [PubMed] [Google Scholar]
- Dawson B. A., Lough J. Immunocytochemical localization of transient DNA strand breaks in differentiating myotubes using in situ nick-translation. Dev Biol. 1988 Jun;127(2):362–367. doi: 10.1016/0012-1606(88)90322-3. [DOI] [PubMed] [Google Scholar]
- Descalzi Cancedda F., Gentili C., Manduca P., Cancedda R. Hypertrophic chondrocytes undergo further differentiation in culture. J Cell Biol. 1992 Apr;117(2):427–435. doi: 10.1083/jcb.117.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eastman A., Barry M. A. The origins of DNA breaks: a consequence of DNA damage, DNA repair, or apoptosis? Cancer Invest. 1992;10(3):229–240. doi: 10.3109/07357909209032765. [DOI] [PubMed] [Google Scholar]
- Edwards S. N., Tolkovsky A. M. Characterization of apoptosis in cultured rat sympathetic neurons after nerve growth factor withdrawal. J Cell Biol. 1994 Feb;124(4):537–546. doi: 10.1083/jcb.124.4.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farnum C. E., Turgai J., Wilsman N. J. Visualization of living terminal hypertrophic chondrocytes of growth plate cartilage in situ by differential interference contrast microscopy and time-lapse cinematography. J Orthop Res. 1990 Sep;8(5):750–763. doi: 10.1002/jor.1100080517. [DOI] [PubMed] [Google Scholar]
- Farnum C. E., Wilsman N. J. Cellular turnover at the chondro-osseous junction of growth plate cartilage: analysis by serial sections at the light microscopical level. J Orthop Res. 1989;7(5):654–666. doi: 10.1002/jor.1100070505. [DOI] [PubMed] [Google Scholar]
- Farzaneh F., Meldrum R., Shall S. Transient formation of DNA strand breaks during the induced differentiation of a human promyelocytic leukaemic cell line, HL-60. Nucleic Acids Res. 1987 Apr 24;15(8):3493–3502. doi: 10.1093/nar/15.8.3493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleischmajer R., MacDonald E. D., Perlish J. S., Burgeson R. E., Fisher L. W. Dermal collagen fibrils are hybrids of type I and type III collagen molecules. J Struct Biol. 1990 Oct-Dec;105(1-3):162–169. doi: 10.1016/1047-8477(90)90110-x. [DOI] [PubMed] [Google Scholar]
- Galotto M., Campanile G., Robino G., Cancedda F. D., Bianco P., Cancedda R. Hypertrophic chondrocytes undergo further differentiation to osteoblast-like cells and participate in the initial bone formation in developing chick embryo. J Bone Miner Res. 1994 Aug;9(8):1239–1249. doi: 10.1002/jbmr.5650090814. [DOI] [PubMed] [Google Scholar]
- Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gentili C., Bianco P., Neri M., Malpeli M., Campanile G., Castagnola P., Cancedda R., Cancedda F. D. Cell proliferation, extracellular matrix mineralization, and ovotransferrin transient expression during in vitro differentiation of chick hypertrophic chondrocytes into osteoblast-like cells. J Cell Biol. 1993 Aug;122(3):703–712. doi: 10.1083/jcb.122.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gold R., Schmied M., Rothe G., Zischler H., Breitschopf H., Wekerle H., Lassmann H. Detection of DNA fragmentation in apoptosis: application of in situ nick translation to cell culture systems and tissue sections. J Histochem Cytochem. 1993 Jul;41(7):1023–1030. doi: 10.1177/41.7.8515045. [DOI] [PubMed] [Google Scholar]
- Hanaoka H. The fate of hypertrophic chondrocytes of the epiphyseal plate. An electron microscopic study. J Bone Joint Surg Am. 1976 Mar;58(2):226–229. [PubMed] [Google Scholar]
- Holtrop M. E. The ultrastructure of the epiphyseal plate. II. The hypertrophic chondrocyte. Calcif Tissue Res. 1972;9(2):140–151. doi: 10.1007/BF02061952. [DOI] [PubMed] [Google Scholar]
- Horvitz H. R., Herskowitz I. Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell. 1992 Jan 24;68(2):237–255. doi: 10.1016/0092-8674(92)90468-r. [DOI] [PubMed] [Google Scholar]
- Howlett C. R. The fine structure of the proximal growth plate and metaphysis of the avian tibia: endochondral osteogenesis. J Anat. 1980 Jun;130(Pt 4):745–768. [PMC free article] [PubMed] [Google Scholar]
- Hunziker E. B., Herrmann W., Schenk R. K. Improved cartilage fixation by ruthenium hexammine trichloride (RHT). A prerequisite for morphometry in growth cartilage. J Ultrastruct Res. 1982 Oct;81(1):1–12. doi: 10.1016/s0022-5320(82)90036-3. [DOI] [PubMed] [Google Scholar]
- Hunziker E. B., Herrmann W., Schenk R. K., Mueller M., Moor H. Cartilage ultrastructure after high pressure freezing, freeze substitution, and low temperature embedding. I. Chondrocyte ultrastructure--implications for the theories of mineralization and vascular invasion. J Cell Biol. 1984 Jan;98(1):267–276. doi: 10.1083/jcb.98.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ibaraki K., Termine J. D., Whitson S. W., Young M. F. Bone matrix mRNA expression in differentiating fetal bovine osteoblasts. J Bone Miner Res. 1992 Jul;7(7):743–754. doi: 10.1002/jbmr.5650070704. [DOI] [PubMed] [Google Scholar]
- Johnstone A. P., Williams G. T. Role of DNA breaks and ADP-ribosyl transferase activity in eukaryotic differentiation demonstrated in human lymphocytes. Nature. 1982 Nov 25;300(5890):368–370. doi: 10.1038/300368a0. [DOI] [PubMed] [Google Scholar]
- Kahn A. J., Simmons D. J. Chondrocyte-to-osteocyte transformation in grafts of perichondrium-free epiphyseal cartilage. Clin Orthop Relat Res. 1977 Nov-Dec;(129):299–304. doi: 10.1097/00003086-197711000-00042. [DOI] [PubMed] [Google Scholar]
- Kurki P., Ogata K., Tan E. M. Monoclonal antibodies to proliferating cell nuclear antigen (PCNA)/cyclin as probes for proliferating cells by immunofluorescence microscopy and flow cytometry. J Immunol Methods. 1988 Apr 22;109(1):49–59. doi: 10.1016/0022-1759(88)90441-3. [DOI] [PubMed] [Google Scholar]
- LISON L. Alcian blue 8 G with chlorantine fast red 5 B.A technic for selective staining of mycopolysaccharides. Stain Technol. 1954 May;29(3):131–138. doi: 10.3109/10520295409115457. [DOI] [PubMed] [Google Scholar]
- Lamprecht J. Symmetric and asymmetric cell division in rat corneal epithelium. Cell Tissue Kinet. 1990 May;23(3):203–216. doi: 10.1111/j.1365-2184.1990.tb01116.x. [DOI] [PubMed] [Google Scholar]
- Lian J. B., McKee M. D., Todd A. M., Gerstenfeld L. C. Induction of bone-related proteins, osteocalcin and osteopontin, and their matrix ultrastructural localization with development of chondrocyte hypertrophy in vitro. J Cell Biochem. 1993 Jun;52(2):206–219. doi: 10.1002/jcb.240520212. [DOI] [PubMed] [Google Scholar]
- Mark M. P., Butler W. T., Prince C. W., Finkelman R. D., Ruch J. V. Developmental expression of 44-kDa bone phosphoprotein (osteopontin) and bone gamma-carboxyglutamic acid (Gla)-containing protein (osteocalcin) in calcifying tissues of rat. Differentiation. 1988;37(2):123–136. doi: 10.1111/j.1432-0436.1988.tb00804.x. [DOI] [PubMed] [Google Scholar]
- Mayani H., Dragowska W., Lansdorp P. M. Lineage commitment in human hemopoiesis involves asymmetric cell division of multipotent progenitors and does not appear to be influenced by cytokines. J Cell Physiol. 1993 Dec;157(3):579–586. doi: 10.1002/jcp.1041570318. [DOI] [PubMed] [Google Scholar]
- McKee M. D., Glimcher M. J., Nanci A. High-resolution immunolocalization of osteopontin and osteocalcin in bone and cartilage during endochondral ossification in the chicken tibia. Anat Rec. 1992 Dec;234(4):479–492. doi: 10.1002/ar.1092340404. [DOI] [PubMed] [Google Scholar]
- McKee M. D., Nanci A., Landis W. J., Gotoh Y., Gerstenfeld L. C., Glimcher M. J. Developmental appearance and ultrastructural immunolocalization of a major 66 kDa phosphoprotein in embryonic and post-natal chicken bone. Anat Rec. 1990 Sep;228(1):77–92. doi: 10.1002/ar.1092280112. [DOI] [PubMed] [Google Scholar]
- Moskalewski S., Malejczyk J. Bone formation following intrarenal transplantation of isolated murine chondrocytes: chondrocyte-bone cell transdifferentiation? Development. 1989 Nov;107(3):473–480. doi: 10.1242/dev.107.3.473. [DOI] [PubMed] [Google Scholar]
- Oberhammer F., Fritsch G., Schmied M., Pavelka M., Printz D., Purchio T., Lassmann H., Schulte-Hermann R. Condensation of the chromatin at the membrane of an apoptotic nucleus is not associated with activation of an endonuclease. J Cell Sci. 1993 Feb;104(Pt 2):317–326. doi: 10.1242/jcs.104.2.317. [DOI] [PubMed] [Google Scholar]
- Pacifici M., Oshima O., Fisher L. W., Young M. F., Shapiro I. M., Leboy P. S. Changes in osteonectin distribution and levels are associated with mineralization of the chicken tibial growth cartilage. Calcif Tissue Int. 1990 Jul;47(1):51–61. doi: 10.1007/BF02555866. [DOI] [PubMed] [Google Scholar]
- Parchment R. E. The implications of a unified theory of programmed cell death, polyamines, oxyradicals and histogenesis in the embryo. Int J Dev Biol. 1993 Mar;37(1):75–83. [PubMed] [Google Scholar]
- Pechak D. G., Kujawa M. J., Caplan A. I. Morphology of bone development and bone remodeling in embryonic chick limbs. Bone. 1986;7(6):459–472. doi: 10.1016/8756-3282(86)90005-0. [DOI] [PubMed] [Google Scholar]
- Roach H. I., Hillier K., Shearer J. R. Ascorbic acid requirements for collagen synthesis (proline hydroxylation) during long-term culture of embryonic chick femurs. Biochim Biophys Acta. 1985 Oct 17;842(2-3):139–145. doi: 10.1016/0304-4165(85)90195-3. [DOI] [PubMed] [Google Scholar]
- Roach H. I. Induction of normal and dystrophic mineralization by glycerophosphates in long-term bone organ culture. Calcif Tissue Int. 1992 Jun;50(6):553–563. doi: 10.1007/BF00582172. [DOI] [PubMed] [Google Scholar]
- Roach H. I. Long-term organ culture of embryonic chick femora: a system for investigating bone and cartilage formation at an intermediate level of organization. J Bone Miner Res. 1990 Jan;5(1):85–100. doi: 10.1002/jbmr.5650050113. [DOI] [PubMed] [Google Scholar]
- Roach H. I., Shearer J. R. Cartilage resorption and endochondral bone formation during the development of long bones in chick embryos. Bone Miner. 1989 Jul;6(3):289–309. doi: 10.1016/0169-6009(89)90035-4. [DOI] [PubMed] [Google Scholar]
- Roach H. I. Trans-differentiation of hypertrophic chondrocytes into cells capable of producing a mineralized bone matrix. Bone Miner. 1992 Oct;19(1):1–20. doi: 10.1016/0169-6009(92)90840-a. [DOI] [PubMed] [Google Scholar]
- Saxe S. A., Lukens L. N., Pawlowski P. J. Changes in the nuclear and cytoplasmic levels of type I and type II collagen RNAs during growth of chondrocytes in 5-bromo-2'-deoxyuridine. J Biol Chem. 1985 Mar 25;260(6):3812–3819. [PubMed] [Google Scholar]
- Shimomura Y., Yoneda T., Suzuki F. Osteogenesis by chondrocytes from growth cartilage of rat rib. Calcif Tissue Res. 1975 Dec 22;19(3):179–187. doi: 10.1007/BF02564002. [DOI] [PubMed] [Google Scholar]
- Stewart A. F., Herrera R. E., Nordheim A. Rapid induction of c-fos transcription reveals quantitative linkage of RNA polymerase II and DNA topoisomerase I enzyme activities. Cell. 1990 Jan 12;60(1):141–149. doi: 10.1016/0092-8674(90)90724-s. [DOI] [PubMed] [Google Scholar]
- Strauss P. G., Closs E. I., Schmidt J., Erfle V. Gene expression during osteogenic differentiation in mandibular condyles in vitro. J Cell Biol. 1990 Apr;110(4):1369–1378. doi: 10.1083/jcb.110.4.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugimoto M., Yasuda T. Asymmetric (differential) cell division of thymic lymphocytes by means of cytoplasmic polarization: possible biological meanings. Thymus. 1983 Sep;5(5-6):297–310. [PubMed] [Google Scholar]
- Thesingh C. W., Groot C. G., Wassenaar A. M. Transdifferentiation of hypertrophic chondrocytes into osteoblasts in murine fetal metatarsal bones, induced by co-cultured cerebrum. Bone Miner. 1991 Jan;12(1):25–40. doi: 10.1016/0169-6009(91)90119-k. [DOI] [PubMed] [Google Scholar]
- WOLBACH S. B., HEGSTED D. M. Vitamin A deficiency in the chick; skeletal growth and the central nervous system. AMA Arch Pathol. 1952 Jul;54(1):12–39. [PubMed] [Google Scholar]
- Wijsman J. H., Jonker R. R., Keijzer R., van de Velde C. J., Cornelisse C. J., van Dierendonck J. H. A new method to detect apoptosis in paraffin sections: in situ end-labeling of fragmented DNA. J Histochem Cytochem. 1993 Jan;41(1):7–12. doi: 10.1177/41.1.7678025. [DOI] [PubMed] [Google Scholar]
- Wyllie A. H. Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview. Cancer Metastasis Rev. 1992 Sep;11(2):95–103. doi: 10.1007/BF00048057. [DOI] [PubMed] [Google Scholar]
- Yoshioka C., Yagi T. Electron microscopic observations on the fate of hypertrophic chondrocytes in condylar cartilage of rat mandible. J Craniofac Genet Dev Biol. 1988;8(3):253–264. [PubMed] [Google Scholar]