Abstract
Previous studies suggest that kinesin heavy chain (KHC) is associated with ER-derived membranes that accumulate in the mitotic apparatus in cells of early sea urchin embryos (Wright, B. D., J. H. Henson, K. P. Wedaman, P. J. Willy, J. N. Morand, and J. M. Scholey. 1991. J. Cell Biol. 113:817-833). Here, we report that the microinjection of KHC- specific antibodies into these cells has no effect on mitosis or ER membrane organization, even though one such antibody, SUK4, blocks kinesin-driven motility in vitro and in mammalian cells. Microinjected SUK4 was localized to early mitotic figures, suggesting that it is able to access kinesin in spindles. In contrast to KHC-specific antibodies, two antibodies that react with kinesin-like proteins (KLPs), namely CHO1 and HD, disrupted mitosis and prevented subsequent cell division. CHO1 is thought to exert this effect by blocking the activity of a 110- kD KLP. The relevant target of HD, which was raised against the KHC motor domain, is unknown; HD may disrupt mitosis by interfering with an essential spindle KLP but not with KHC itself, as preabsorption of HD with KHC did not alter its ability to block mitosis. These data indicate that some KLPs have essential mitotic functions in early sea urchin embryos but KHC itself does not.
Full Text
The Full Text of this article is available as a PDF (2.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bukovsky J., Kennett R. H. Simple and rapid purification of monoclonal antibodies from cell culture supernatants and ascites fluids by hydroxylapatite chromatography on analytical and preparative scales. Hybridoma. 1987 Apr;6(2):219–228. doi: 10.1089/hyb.1987.6.219. [DOI] [PubMed] [Google Scholar]
- Cole D. G., Cande W. Z., Baskin R. J., Skoufias D. A., Hogan C. J., Scholey J. M. Isolation of a sea urchin egg kinesin-related protein using peptide antibodies. J Cell Sci. 1992 Feb;101(Pt 2):291–301. doi: 10.1242/jcs.101.2.291. [DOI] [PubMed] [Google Scholar]
- Hall D. H., Hedgecock E. M. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell. 1991 May 31;65(5):837–847. doi: 10.1016/0092-8674(91)90391-b. [DOI] [PubMed] [Google Scholar]
- Henson J. H., Begg D. A., Beaulieu S. M., Fishkind D. J., Bonder E. M., Terasaki M., Lebeche D., Kaminer B. A calsequestrin-like protein in the endoplasmic reticulum of the sea urchin: localization and dynamics in the egg and first cell cycle embryo. J Cell Biol. 1989 Jul;109(1):149–161. doi: 10.1083/jcb.109.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henson J. H., Nesbitt D., Wright B. D., Scholey J. M. Immunolocalization of kinesin in sea urchin coelomocytes. Association of kinesin with intracellular organelles. J Cell Sci. 1992 Oct;103(Pt 2):309–320. doi: 10.1242/jcs.103.2.309. [DOI] [PubMed] [Google Scholar]
- Hinkley R. E., Wright B. D., Lynn J. W. Rapid visual detection of sperm-egg fusion using the DNA-specific fluorochrome Hoechst 33342. Dev Biol. 1986 Nov;118(1):148–154. doi: 10.1016/0012-1606(86)90082-5. [DOI] [PubMed] [Google Scholar]
- Hiramoto Y. Micromanipulation. Cell Struct Funct. 1984 Jul;9 (Suppl):s139–s144. doi: 10.1247/csf.9.supplement_s139. [DOI] [PubMed] [Google Scholar]
- Hiramoto Y., Nakano Y. Micromanipulation studies of the mitotic apparatus in sand dollar eggs. Cell Motil Cytoskeleton. 1988;10(1-2):172–184. doi: 10.1002/cm.970100122. [DOI] [PubMed] [Google Scholar]
- Hollenbeck P. J., Swanson J. A. Radial extension of macrophage tubular lysosomes supported by kinesin. Nature. 1990 Aug 30;346(6287):864–866. doi: 10.1038/346864a0. [DOI] [PubMed] [Google Scholar]
- Ingold A. L., Cohn S. A., Scholey J. M. Inhibition of kinesin-driven microtubule motility by monoclonal antibodies to kinesin heavy chains. J Cell Biol. 1988 Dec;107(6 Pt 2):2657–2667. doi: 10.1083/jcb.107.6.2657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiehart D. P. Microinjection of echinoderm eggs: apparatus and procedures. Methods Cell Biol. 1982;25(Pt B):13–31. doi: 10.1016/s0091-679x(08)61418-1. [DOI] [PubMed] [Google Scholar]
- McIntosh J. R., Pfarr C. M. Mitotic motors. J Cell Biol. 1991 Nov;115(3):577–585. doi: 10.1083/jcb.115.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nislow C., Lombillo V. A., Kuriyama R., McIntosh J. R. A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature. 1992 Oct 8;359(6395):543–547. doi: 10.1038/359543a0. [DOI] [PubMed] [Google Scholar]
- Nislow C., Sellitto C., Kuriyama R., McIntosh J. R. A monoclonal antibody to a mitotic microtubule-associated protein blocks mitotic progression. J Cell Biol. 1990 Aug;111(2):511–522. doi: 10.1083/jcb.111.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oberdorf J. A., Lebeche D., Head J. F., Kaminer B. Identification of a calsequestrin-like protein from sea urchin eggs. J Biol Chem. 1988 May 15;263(14):6806–6809. [PubMed] [Google Scholar]
- Rappaport R. Establishment of the mechanism of cytokinesis in animal cells. Int Rev Cytol. 1986;105:245–281. doi: 10.1016/s0074-7696(08)61065-7. [DOI] [PubMed] [Google Scholar]
- Rebhun L. I., Palazzo R. E. In vitro reactivation of anaphase B in isolated spindles of the sea urchin egg. Cell Motil Cytoskeleton. 1988;10(1-2):197–209. doi: 10.1002/cm.970100124. [DOI] [PubMed] [Google Scholar]
- Rodionov V. I., Gyoeva F. K., Gelfand V. I. Kinesin is responsible for centrifugal movement of pigment granules in melanophores. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4956–4960. doi: 10.1073/pnas.88.11.4956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sawin K. E., Scholey J. M. Motor proteins in cell division. Trends Cell Biol. 1991 Nov;1(5):122–129. doi: 10.1016/0962-8924(91)90117-r. [DOI] [PubMed] [Google Scholar]
- Saxton W. M., Hicks J., Goldstein L. S., Raff E. C. Kinesin heavy chain is essential for viability and neuromuscular functions in Drosophila, but mutants show no defects in mitosis. Cell. 1991 Mar 22;64(6):1093–1102. doi: 10.1016/0092-8674(91)90264-y. [DOI] [PubMed] [Google Scholar]
- Scholey J. M., Porter M. E., Grissom P. M., McIntosh J. R. Identification of kinesin in sea urchin eggs, and evidence for its localization in the mitotic spindle. Nature. 1985 Dec 5;318(6045):483–486. doi: 10.1038/318483a0. [DOI] [PubMed] [Google Scholar]
- Sellitto C., Kuriyama R. Distribution of a matrix component of the midbody during the cell cycle in Chinese hamster ovary cells. J Cell Biol. 1988 Feb;106(2):431–439. doi: 10.1083/jcb.106.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sluder G., Miller F. J., Spanjian K. The role of spindle microtubules in the timing of the cell cycle in echinoderm eggs. J Exp Zool. 1986 Jun;238(3):325–336. doi: 10.1002/jez.1402380307. [DOI] [PubMed] [Google Scholar]
- Terasaki M., Jaffe L. A. Organization of the sea urchin egg endoplasmic reticulum and its reorganization at fertilization. J Cell Biol. 1991 Sep;114(5):929–940. doi: 10.1083/jcb.114.5.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vallee R. B., Shpetner H. S., Paschal B. M. Potential roles of microtubule-associated motor molecules in cell division. Ann N Y Acad Sci. 1990;582:99–107. doi: 10.1111/j.1749-6632.1990.tb21671.x. [DOI] [PubMed] [Google Scholar]
- Wright B. D., Henson J. H., Wedaman K. P., Willy P. J., Morand J. N., Scholey J. M. Subcellular localization and sequence of sea urchin kinesin heavy chain: evidence for its association with membranes in the mitotic apparatus and interphase cytoplasm. J Cell Biol. 1991 May;113(4):817–833. doi: 10.1083/jcb.113.4.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright B. D., Scholey J. M. Microtubule motors in the early sea urchin embryo. Curr Top Dev Biol. 1992;26:71–91. doi: 10.1016/s0070-2153(08)60441-x. [DOI] [PubMed] [Google Scholar]