Abstract
Escherichia coli K-12 strain CU1008 cannot use L-serine as the sole carbon source, but it could use L-serine as an auxiliary carbon source with glucose, L-alanine, or pyruvate and could derive energy from L-serine to support oxygen uptake. CU1008 grew with L-serine if it was also provided with glycine and leucine. These may act by increasing the available activity of L-serine deaminase; other explanations are also explored.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson A., Cooper R. A. Gluconeogenesis in Escherichia coli The role of triose phosphate isomerase. FEBS Lett. 1969 Jul;4(1):19–20. doi: 10.1016/0014-5793(69)80184-5. [DOI] [PubMed] [Google Scholar]
- Carter J. E., Sagers R. D. Ferrous ion-dependent L-serine dehydratase from Clostridium acidiurici. J Bacteriol. 1972 Feb;109(2):757–763. doi: 10.1128/jb.109.2.757-763.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cosloy S. D., McFall E. L-Serine-sensitive mutants of Escherichia coli K-12. J Bacteriol. 1970 Sep;103(3):840–841. doi: 10.1128/jb.103.3.840-841.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniel J., Danchin A. Involvement of cyclic AMP and its receptor protein in the sensitivity of Escherichia coli K 12 toward serine: excretion of 2-ketobutyrate, a precursor of isoleucine. Mol Gen Genet. 1979 Nov;176(3):343–350. doi: 10.1007/BF00333096. [DOI] [PubMed] [Google Scholar]
- Fraser J., Newman E. B. Derivation of glycine from threonine in Escherichia coli K-12 mutants. J Bacteriol. 1975 Jun;122(3):810–817. doi: 10.1128/jb.122.3.810-817.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison D. E. The regulation of respiration rate in growing bacteria. Adv Microb Physiol. 1976;14(11):243–313. doi: 10.1016/s0065-2911(08)60229-5. [DOI] [PubMed] [Google Scholar]
- Isenberg S., Newman E. B. Studies on L-serine deaminase in Escherichia coli K-12. J Bacteriol. 1974 Apr;118(1):53–58. doi: 10.1128/jb.118.1.53-58.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NEWMAN E. B., MAGASANIK B. THE RELATION OF SERINE--GLYCINE METABOLISM TO THE FORMATION OF SINGLE-CARBON UNITS. Biochim Biophys Acta. 1963 Nov 15;78:437–448. doi: 10.1016/0006-3002(63)90905-3. [DOI] [PubMed] [Google Scholar]
- Newman E. B., Batist G., Fraser J., Isenberg S., Weyman P., Kapoor V. The use of glycine as nitrogen source by Escherichia coli K12. Biochim Biophys Acta. 1976 Jan 14;421(1):97–105. doi: 10.1016/0304-4165(76)90173-2. [DOI] [PubMed] [Google Scholar]
- Newman E. B., Kapoor V. In vitro studies on L-serine deaminase activity of Escherichia coli K12. Can J Biochem. 1980 Nov;58(11):1292–1297. doi: 10.1139/o80-173. [DOI] [PubMed] [Google Scholar]
- Newman E. B. Metabolism of serine and glycine in E. coli K12. I. The role of formate in the metabolism of serine-glycine auxotrophs. Can J Microbiol. 1970 Oct;16(10):933–940. doi: 10.1139/m70-160. [DOI] [PubMed] [Google Scholar]
- Newman E. B., Morris J. F., Walker C., Kapoor V. A mutation affecting L-serine and energy metabolism in E. coli K12. Mol Gen Genet. 1981;182(1):143–147. doi: 10.1007/BF00422781. [DOI] [PubMed] [Google Scholar]
- PARDEE A. B., PRESTIDGE L. S. Induced formation of serine and threonine deaminases by Escherichia coli. J Bacteriol. 1955 Dec;70(6):667–674. doi: 10.1128/jb.70.6.667-674.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PIZER L. I., POTOCHNY M. L. NUTRITIONAL AND REGULATORY ASPECTS OF SERINE METABOLISM IN ESCHERICHIA COLI. J Bacteriol. 1964 Sep;88:611–619. doi: 10.1128/jb.88.3.611-619.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong H. C., Lessie T. G. Hydroxy amino acid metabolism in Pseudomonas cepacia: role of L-serine deaminase in dissimilation of serine, glycine, and threonine. J Bacteriol. 1979 Oct;140(1):240–245. doi: 10.1128/jb.140.1.240-245.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]