Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1963 Dec;50(6):1135–1143. doi: 10.1073/pnas.50.6.1135

CELL-FREE PEPTIDE SYNTHESIS DEPENDENT UPON SYNTHETIC OLIGODEOXYNUCLEOTIDES*

Philip Leder 1, Brian F C Clark 1, William S Sly 1, Sidney Pestka 1, Marshall W Nirenberg 1
PMCID: PMC221286  PMID: 14096189

Full text

PDF
1139

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. CHAMBERLIN M., BERG P. Deoxyribo ucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proc Natl Acad Sci U S A. 1962 Jan 15;48:81–94. doi: 10.1073/pnas.48.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. EISENSTADT J. M., KAMEYAMA T., NOVELLI G. D. A requirement for gene-specific deoxyribonucleic acid for the cell-free synthesis of beta-galactosidase. Proc Natl Acad Sci U S A. 1962 Apr 15;48:652–659. doi: 10.1073/pnas.48.4.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FALASCHI A., ADLER J., KHORANA H. G. CHEMICALLY SYNTHESIZED DEOXYPOLYNUCLEOTIDES AS TEMPLATES FOR RIBONUCLEIC ACID POLYMERASE. J Biol Chem. 1963 Sep;238:3080–3085. [PubMed] [Google Scholar]
  5. FURTH J. J., HURWITZ J., GOLDMANN M. The directing role of DNA in RNA synthesis. Specificity of the deoxyadenylate deoxythymidvlate copolymer as a primer. Biochem Biophys Res Commun. 1961 Apr 28;4:431–435. doi: 10.1016/0006-291x(61)90303-5. [DOI] [PubMed] [Google Scholar]
  6. FURTH J. J., HURWITZ J., GOLDMANN M. The directing role of DNA in RNA synthesis. Biochem Biophys Res Commun. 1961 Apr 7;4:362–367. doi: 10.1016/0006-291x(61)90219-4. [DOI] [PubMed] [Google Scholar]
  7. FURTH J. J., KAHAN F. M., HURWITZ J. Stimulation by RNA polymerase of amino acid incorporation into proteins by extracts of Escherichia coli. Biochem Biophys Res Commun. 1962 Oct 31;9:337–343. doi: 10.1016/0006-291x(62)90051-7. [DOI] [PubMed] [Google Scholar]
  8. GARDNER R. S., WAHBA A. J., BASILIO C., MILLER R. S., LENGYEL P., SPEYER J. F. Synthetic polynucleotides and the amino acid code. VII. Proc Natl Acad Sci U S A. 1962 Dec 15;48:2087–2094. doi: 10.1073/pnas.48.12.2087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HEPPEL L. A., HARKNESS D. R., HILMOE R. J. A study of the substrate specificity and other properties of the alkaline phosphatase of Escherichia coli. J Biol Chem. 1962 Mar;237:841–846. [PubMed] [Google Scholar]
  10. KRAKOW J. S., OCHOA S. Ribonucleic acid polymerase of Azotobacter vinelandii. I. Priming by polyribonucleotides. Proc Natl Acad Sci U S A. 1963 Jan 15;49:88–94. doi: 10.1073/pnas.49.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LENGYEL P., SPEYER J. F., OCHOA S. Synthetic polynucleotides and the amino acid code. Proc Natl Acad Sci U S A. 1961 Dec 15;47:1936–1942. doi: 10.1073/pnas.47.12.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. NAKAMOTO T., WEISS S. B. The biosynthesis of RNA: printing by polyribonucleotides. Proc Natl Acad Sci U S A. 1962 May 15;48:880–887. doi: 10.1073/pnas.48.5.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. NING C., STEVENS A. Studies of the effect of T2 RNA formed with purified RNA polymerase on amino acid incorporation into protein. J Mol Biol. 1962 Dec;5:650–662. doi: 10.1016/s0022-2836(62)80093-x. [DOI] [PubMed] [Google Scholar]
  15. NIRENBERG M. W., MATTHAEI J. H. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1588–1602. doi: 10.1073/pnas.47.10.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. NISMAN B., FUKUHARA H. [Incorporation of amino acids and the synthesis of beta-galactosidase by enzymatic fraction of Escherichia coli]. C R Hebd Seances Acad Sci. 1959 Nov 23;249:2240–2242. [PubMed] [Google Scholar]
  17. RADDING C. M., JOSSE J., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. XII. A polymer of deoxyguanylate and deoxycytidylate. J Biol Chem. 1962 Sep;237:2869–2876. [PubMed] [Google Scholar]
  18. RAZZELL W. E., KHORANA H. G. Studies on polynucleotides. IV. Enzymic degradation; the stepwise action of venom phosphodiesterase on deoxyribo-oligonucleotides. J Biol Chem. 1959 Aug;234(8):2114–2117. [PubMed] [Google Scholar]
  19. SCHACHMAN H. K., ADLER J., RADDING C. M., LEHMAN I. R., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. VII. Synthesis of a polymer of deoxyadenylate and deoxythymidylate. J Biol Chem. 1960 Nov;235:3242–3249. [PubMed] [Google Scholar]
  20. SHERMAN J. R., ADLER J. Galactokinse from Escherichia coli. J Biol Chem. 1963 Mar;238:873–878. [PubMed] [Google Scholar]
  21. WALEY S. G., WATSON J. The action of trypsin on polylysine. Biochem J. 1953 Sep;55(2):328–337. doi: 10.1042/bj0550328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. WOOD W. B., BERG P. The effect of enzymatically synthesized ribonucleic acid on amino acid incorporation by a soluble protein-ribosome system from Escherichia coli. Proc Natl Acad Sci U S A. 1962 Jan 15;48:94–104. doi: 10.1073/pnas.48.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES